Computer Graphics - Week 1

Class Objectives

- Overview of important topics in computer graphics
- Detailed understanding of fundamental 3D computer graphics algorithms and techniques
- Ability to design and implement graphics applications
- Starting point for understanding technical literature and foundation for independent research
Class Rules: Grading

► Requirements
 ● Midterm exam (20%)
 ● Final exam (40%)
 ● 4 assignments (40%)

Class Rules: Assignments

► Programming problems about topics covered in class
► No cheating and no collaboration!
► Overall grade is the average of all assignments

► Each assignment worth max. 100 points
 ● Assignments due before class on assigned date
 ● 10 point penalty for each day after deadline
 ● 0 points if not submitted by Monday 5:30 pm

► Programming solutions must …
 ● work with (at least) the provided data sets
 ● be well structured and use only specified libraries or API calls
 ● be clearly documented (comments, Readme file, etc.)
Literature

Various journals, e.g.
- IEEE Computer Graphics and Applications
- ACM Transactions on Graphics
- IEEE Transactions on Visualization and Computer Graphics
- Computer Graphics Forum
- Computers & Graphics
- The Visual Computer

Proceedings from annual events, e.g.
- SIGGRAPH conference
- Eurographics conference
- Symposium on Interactive 3D Graphics
- Eurographics Rendering Workshop
- Siggraph/Eurographics Hardware Workshop
- IEEE Symposium on Parallel Rendering
- IEEE Symposium on Volume Rendering
- ... and many, many others

Where to Get More Information

▸ Class Web-page

▸ Class Newsgroup
 - columbia.spring.cs4160

▸ Office hours
 - Wednesdays before class, adjunct office MUDD 460
 - Elias: Thursdays 12:00-1:00 pm, CEPSR 603
 - By appointment

▸ E-mail + Phone
 - bosch@us.ibm.com 914-945-1585
 - gagman@cs.columbia.edu 212-939-7077
Course Overview: Introduction

Introduction
- Historic overview, graphics application domains, 2D vs 3D graphics, graphics vs. image processing, human visual system

Course Overview: Raster Graphics

Raster Graphics Pipeline
- Overview, Coordinate systems, modeling transformations, hierarchical modeling, basic animation techniques
- Viewing transformations, camera model, orthographic and perspective projection.
- Lighting models. Rendering primitives
- Clipping for lines and polygons, scissoring, capping, non-convex clip regions

Raster Graphics Pipeline
- Scan Conversion for lines and triangles, attribute interpolation, perspective correction
- Fragment processing, z-buffer, texture mapping, stipple pattern, anti-aliasing, double-buffering
- Event handling
- Graphics APIs and description languages
Course Overview: Advanced Topics

Advanced Topics
- Global Illumination
 - Ray tracing, spatial data structures and advanced lighting models (refraction, transparency, optical simulation)
 - Radiosity and two-pass rendering
- Modeling
 - CSG, free-form curves and surfaces
- Graphics Hardware
- Color
 - Color theory, color gamuts, gamut matching, gamma correction, color maps

Advanced Topics
- Color
 - Color theory, color gamuts, gamut matching, gamma correction, color maps
- Volume Rendering
 - Particle rendering, gaseous media, special effects
- Applications
 - SciVis, games, CAD, user-interfaces

Overview of Week 1

- What is Computer Graphics?
- Applications of computer graphics
- Historic overview
- System view of computer graphics
- Optics for Dummies
- Human visual system
Computer Graphics

- Also known as
 - image synthesis
 - computer generated imagery (CGI)
 - rendering

- Creation, storage, display, and manipulation of models and images of objects

- Design of software and hardware to support the display of images

- Interactive manipulation and editing of models

Applications of Computer Graphics

- CAD/CAM
 - Mechanical and architectural design

- Entertainment
 - Games
 - TV Animations

- Scientific Visualization
 - Display of multi-dimensional data, e.g. weather, petroleum, medical

- Virtual Reality (VR)
 - Modeling of a “virtual” 3D worlds (Contrast: augmented reality, a.k.a. AR)
 - Manipulation and interaction
 - Immerse or fish-tank VR

- User interface design
 - WIMP interface
 - Text and font technology
 - Direct Manipulation

- Business Presentations

- Internet / WWW
Applications: CAD / CAM

AutoCAD

Applications: CAD / CAM

ProEngineer

BILL OF MATERIAL

<table>
<thead>
<tr>
<th>No</th>
<th>Component Name</th>
<th>Type</th>
<th>Qty</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BAR</td>
<td>PART</td>
<td>1</td>
<td>4.00</td>
</tr>
<tr>
<td>2</td>
<td>W. MAO</td>
<td>PART</td>
<td>1</td>
<td>2.52</td>
</tr>
<tr>
<td>3</td>
<td>F. SCREW</td>
<td>PART</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>4</td>
<td>W. SCREW</td>
<td>PART</td>
<td>1</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>W. SCREW</td>
<td>PART</td>
<td>1</td>
<td>1.25</td>
</tr>
</tbody>
</table>
Applications: Games

Quake

Applications: Weather Visualization

IBM Data Explorer
Applications:
Scanning Tunneling Microscope

Applications: Visualization

DX Dynamic Brittle-Ductile Transition.mpg
Applications: Architectural Design

(C) Scott Routen + Reuben McFarland

Applications: Virtual Reality

Copyright, University of Michigan
Applications: Business Visualization
Computer Graphics: Related Fields

- **Simulation**
 - Various fields generate data to be visualized, e.g. engineering, science, art, sociology/psychology, architecture

- **Modeling**
 - Exact (mathematical) description of models
 - Representations optimized for storage, portability, editing, queries, robustness, efficient display, ...

- **Image Processing**
 - Manipulation, storage and display of raster images

- **Physics / Optics**

- **Electrical and Computer Engineering**
 - Design of computers and devices to display graphics

2D vs. 3D Graphics

- **2D Graphics**
 - 2D primitives (duhh !)
 - Lines, Polygons, Text, Patterns
 - Rendering
 - Typically directly controlled by the application
 - Low-level specification, e.g. DrawLine (p1, p2, color)
 - Applications
 - User interfaces
 - Desktop graphics (word processing, presentations, drawing packages)
 - Drafting
 - ...

- **3D Graphics**
 - 2D and 3D primitives
 - Lines, polygons, polyhedra, ...
 - Rendering
 - Specified by the application and controlled by graphics subsystem
 - Low-level specification, e.g. DrawTri (p1, p2, p3, color)
 - Higher-level specification, e.g. DrawTri (p1, p2, p3, light)
 - High-level specification, e.g. DrawObject (o, xform, mat)
 - Applications
 - CAD / CAM
 - Virtual Reality
 - Simulation + Games
 - ...

Raster vs. Vector Graphics

- **Raster Graphics**
 - The display is divided into small dot, the picture elements (a.k.a. pixels)
 - Allows the display of filled and shaded areas
 - In the end, anything to be displayed is converted into pixels.
 - Hardware must provide storage for every pixel on the screen: the Frame Buffer

- **Vector graphics**
 - The basic display primitive are line segments (a.k.a. vectors or strokes)
 - Allows for display of wireframes
 - All objects have to be converted to a collection of lines
 - Hardware is responsible for cycling through all vectors in no more 1/30s second.

Graphics vs. Image Processing

- **Graphics**
 - Basic primitives are geometric shapes
 - Simplest primitive is a 2D/3D point
 - Higher-level primitives include other geometric shapes
 - Polygons, conic sections, splines, solids
 - Primitives describes in arbitrary coordinate system that gets mapped onto the display device
 - Operations
 - Affine transformations
 - Lighting and Shading (3D)
 - Texturing and pattern

- **Image Processing**
 - Basic primitives are raster images
 - Simplest primitive is a single pixel
 - Higher-level primitives
 - rectangular bitmaps / pixmaps
 - objects (arbitrary collection of pixels)
 - layers and channels
 - Operations defined to modify and manipulate pixel values
 - Manipulation
 - Rotation, scale, shear, ...
 - Filtering
 - Brightness, contrast, edges, blurring, ...
 - Transformations
 - Fourier, DCT, Wavelet, ...
 - Compression
A Brief History of Computer Graphics

Pre-1960
Special-purpose graphics solutions
- MIT Whirlwind
 - Modified oscilloscope for visualization and analysis of aircraft stability
- SAGE air-defense system
 - Vector screen for display of radar targets
 - Light pen input

1960s
Graphics as a discipline
- Basic graphics algorithms
 - Modeling and viewing
 - Line and polygon clipping
- Satellite displays
 - Attached to mainframe computers over low-bandwidth connections
 - High-level commands controlled the graphics terminal, requiring "intelligence" in the terminal
 - High cost, restriction to defense and industrial applications
- 1963: Ivan Sutherland's PhD
 - Introduced many fundamental concepts still in use today

1970s
Commercial graphics & Raster graphics
- First raster displays
- All fundamental (raster) graphics algorithms
 - Hidden surface removal
 - Clipping
 - Lighting and shading
 - Curve and surface modeling
- First textbooks

1980s
Mainstream, Modeling, Photorealism
- Personal computers
 - Apple II, Lisa, Macintosh
 - Later IBM PCs with CGA, EGA, VGA, SVGA, XGA, ... graphics
 - Window-based operating systems
- Solid Modeling
 - Binary Space Partitioning (BSP)
 - Constructive Solid Geometry (CSG)
- Global Illumination
 - Ray-tracing (1968, late 70s, early 80s)
 - Radiosity (1984)
 - Improved illumination models
A Brief History of Computer Graphics

- **1990s**
 - Ubiquitous+cheap, convergence
 - Pervasive graphics hardware
 - Ubiquitous use of graphics in business and consumer applications
 - 3D graphics hardware is standard on home PCs
 - Image-based rendering
 - Combines graphics and imaging
 - Visualization of (really) large models
 - Digital content creation
 - Special effects and post-processing
 - Toy Story

- **2000 and beyond ???**
 - Improved user interfaces (3D, direct manipulation, intuitive and productive)
 - Distributed (networked) graphics
 - 3D hardware will be truly universal and cheap
 - Converged graphics, video and imaging
 - Large and small high-resolution displays

System View of Computer Graphics

Diagram showing:
- Simulation
- Modeling
- Capture
- Model
- Graphics System
- Display
- Input Devices
- Feedback
Key Components of a Computer Graphics System

- **Application**
 - Generates graphics data and interprets user input

- **Model**
 - Interface between application and graphics components
 - Representation must support application and graphics

- **Graphics Subsystem**
 - Interprets model and converts it into pixels (or vectors)

- **Output (Display)**
 - CRT, plotter, printer, film …

- **User**
 - Receives and interprets visual signals
 - Interacts with the application to control model and/or graphics
 - Closes the feedback from display to application

Optics for Dummies

- **Ray optics**
 - In a homogeneous medium light proceeds in a straight line

- **Reflection**
 - Incident and reflected ray subtend same angles with the surface normal
 - Incident ray, reflected ray and surface normal lie in a plane

- **Refraction**
 - Ray is refracted towards surface normal when entering denser material:
 \[\frac{\sin \alpha}{\sin \beta} = \frac{n_2}{n_1} \]
 - Wavelength dependent (prism !)
 - Incident ray, refracted ray and surface normal lie in a plane
Optics for Dummies (cont’d)

Wave optics
- Light is electromagnetic energy, characterized by
 - Amplitude \(I \), perceived as intensity or brightness
 - Frequency or wavelength \(f = \frac{c}{\lambda} \), perceived as spectral color
 - Visual light: \(\lambda = 380 \ldots 780 \text{ nm} \) (red … violet)
 - Polarization

Waves can be linearly superimposed
- A spectrum is the linear combinations of light with different wavelengths

Wave optics are important when explaining
- diffuse illumination phenomena
- interaction of light and thin layers, e.g. soap bubbles
- surface properties (metal vs. plastic, color filters, etc.)

Human Visual System

Why study the visual system?
- It is part of the graphics system.
- It helps to understand various "optical illusions".
- Good user interface design account for its properties.

Further reading
Human Visual System: Overview

- **Optical path**
 - Eyes
 - Relatively well understood

- **Processing part**
 - Retina (low-level processing)
 - Optic nerve
 - Brain (high-level processing)

 - Processing at increasing levels of abstraction
 - Decreasing levels of knowledge about the details

Cross-section of the Eye

- Sclera
- Choroid
- Retina
- Visual Pole
- Fovea
- Visual axis
- Optical axis
- Lens
- Cornea
- Iris
- Aqueous humor
- Ciliary muscle
- Vitreous humor
- Optic disk
- Optic nerve
Cross-section of the Retina

- **Photoreceptors**
 - **Rods**
 - Black/white perception
 - Very sensitive
 - Denser around perimeter, none in the fovea
 - **Cones**
 - Color perception
 - Concentrated around fovea
 - 3 types for different colors
- **Signal Processing Layer**
 - **First Synaptic Layer**
 - **Intermediate Neurons**
 - **Ganglion Cells**
 - **Second Synaptic Layer**

Spectral Absorbance

- **3 types of cones for different wavelengths**
 - **S** (short): 430 nm (blue)
 - **M** (medium): 550 nm (green)
 - **L** (long): 580 nm (red)
 - Different sensitivity
 - Mostly used during daytime
- **Rods have maximum sensitivity at 500 nm**
 - Useful for night vision
Retina: Signal Processing Functions

- Edge detection and enhancement
 - Mach-band effect
 - Shading of smooth surfaces

- Simple color transformations
 - Color opponency, e.g. contrasting colors are mutually amplifying
 - User interface design

- Noise tolerance
 - Distribution of cones across the retina
 - Anti-aliasing and dithering

Depth Perception

- Combination of different mechanisms

- Oculomotor Depth
 - Accomodation of the lens to bring object into focus

- Binocular Depth
 - Stereopsis
 - Near field depth perception
 - Requires matching of left and right images
 - Note: Random dot stereograms indicate that pattern matching is not the first step

- Monocular Depth
 - Interposition (visibility, occlusion)
 - Perspective
 - Size: larger objects are closer than smaller objects.
 - Convergence of straight lines
 - Texture gradient (pattern denser in the distance)
 - Atmospheric effects, e.g. fog, haze
 - Motion parallax
 - Detection of visual flow
 - Close objects move faster across the visual field than distant objects.
Input Devices

- Closes the feedback loop between user and graphics system

Classification of Input Devices

- Type
- Absolute or relative
- 2D or 3D
- Haptic (force feedback)

Input Devices Types

- **Locator**
 - Position or orientation
 - Tablet, Mouse, Trackball, Joystick, Lightpen, Touchscreen

- **Pick**
 - Selection of a graphical entity
 - Many locator devices coupled with trigger button(s)

- **Valuator**
 - Input of a single real number
 - Dials, sliders

- **Keyboard**

- **Choice**
 - Selection from a limited number of choice
 - Function keys, menus, soft (on-screen) buttons
Absolute vs. Relative Locator Devices

Absolute locators report coordinates with reference to a fixed coordinate system
- Examples: Tablet, Lightpen, Touchscreen
- Advantage: Accurate input of space coordinates
- Disadvantage: Cost, Footprint

Relative locators report coordinates with respect to previous coordinates
- Examples: Mouse, Trackball, Continuous dials (potentiometers)
- Advantage: Cost, Footprint
- Disadvantage: Requires software to compute absolute coordinates

Input Mechanisms

Optical
- Light barrier
- Optical touch screens to detect finger position
- Bending of fibers
- E.g. VPL data glove
- Pattern recognition
- Optical mice detect a pattern of red and green lines in the mouse pad
- Tracking of features for motion capture

Mechanical
- Mouse: Rotation of ball is sensed using rollers that actuate potentiometers or slotted disks interrupting a beam of light
- Accelerometers

Electrical
- Resistance
- Potentiometers
- Resistive foam
- Strain gauges (Thinkpad)
- Capacitance
- Sense the distortion in an electric field

Magnetic
- Distortion / strength of magnetic field
- Emitter stationary, sensor mobile
Interfacing to Input Devices

Polling
- Application-controlled query of the device
 - Request of state and position information
 - Often requires detailed knowledge about how to talk to the device
- Might introduce delays in application due to wait for slow device
 - May require application to estimate delay between request and delivery of data
- Often the only way to use non-standard devices

Events
- OS provides application with events to signal device activity
 - Requires integration of the device (type) into the OS or windowing system
 - Abstracts from device specific interface
 - Event data structure contains all or partial data about device
- Application may get inundated with events
 - Event manager and/or application may have to discard intermediate events

Input Devices: Mice

- **ScrollPoint**
- Designed for performance and comfort
- Innovative shape
- Soft-touch grips enhance control
- Thumb button for double clicking

Copyright IBM Corp.

Copyright Logitech Inc.
Input Devices: 3D Mouse

Copyright Logitech Inc.

Input Devices: Spaceball

Copyright Sun Microsystems Inc.
Input Devices: Puck

Input Devices: Polhemus Trackers

Copyright Polhemus Inc.
Input Devices: Data Glove

Input Devices: Tablet
Summary

- Objectives of Computer Graphics
 - Differences to neighboring disciplines

- Overview of the historical development of the field

- Overall structure of a Graphics System

- Working of the human visual system

- Characteristics and classification of input devices

Homework

- Review material and read background texts
 - Foley et al.: Chapters 1, 8, 8.1,
 - Glassner: Chapter 1

- Prepare
 - Foley et al.: Chapters 5 + 7 (Geometrical Transformations and Object Hierarchy)
 - Foley et al.: Appendix (Mathematics for Computer Graphics)
Next week ...

- Raster Graphics Pipeline

- Geometric Transformations and Hierarchical Modeling

\[P' = T \cdot P \]

\[(0 \ a, 1 \ b) \cdot (x \ a, y \ b) = (x+a \ a, y+b \ b) \]

\[\Rightarrow x' = x + a \ ; \ y' = y + b \]