Computer Graphics - Week 3

Questions about Last Week?
Overview of Week 3

- Viewing transformations
- Projections
- Camera models

Viewing Transformation
Viewing Compared to Taking Pictures

- **View Vector & Viewplane:** Direct camera towards subject
- **Viewpoint:** Position "camera" in scene
- **Up Vector:** Level the camera
- **Field of View:** Adjust zoom
- **Clipping:** Select content
- **Projection:** Exposure

Viewing Transformation

- **Position and orient camera**
 - Set viewpoint, viewing direction and upvector

- **Use geometric transformation to position**
 - Camera with respect to the scene or ...
 - Scene with respect to the camera.
 - Both approaches are mathematically equivalent.
Viewing Pipeline and Coordinate Systems

- **Modeling Transformation**
 - Position objects in world coordinates

- **Viewing Transformation**
 - Position objects in eye/camera coordinates
 - EC a.k.a. View Reference Coordinates

- **Perspective Transformation**
 - Convert view volume to a canonical view volume
 - Also used for clipping
 - PC a.k.a. clip coordinates

- **Perspective Division**
 - Perform mapping from 3D to 2D

- **Viewport Mapping**
 - Map normalized device coordinates into window/screen coordinates

Why a special eye coordinate system?

- In principal it is possible to directly project on an arbitrary viewplane. However, this is computationally very involved.

- Instead, the scene is transformed into special coordinate system, that makes projection easy.
 - View down the negative z-axis
 - Projection plane parallel to z=0

- This "extra" transformation is free!
 - It can be combined with the modeling transformation
 - Therefore, every point must be transformed only once.
 - This transformation is known in OpenGL as the Model-View Matrix.
Computing the Viewing Transformation

- Changing from WC to EC is simple change of coordinate systems which can be expressed using a 4x4 matrix:

\[
P_{EC} = M_{WE} \cdot P_{WC}
\]

\[
M_{WE} = \begin{pmatrix} Wx_{EC} & Wy_{EC} & Wz_{EC} & Wo_{EC} \end{pmatrix}
\]

- \(W_{i_{EC}}\) is unit vector on the WC \(i\)-axis expressed in EC
- \(W_{o_{EC}}\) is the WC origin expressed in EC
- \(M_{ME}\) is the Model-View Matrix.

- Same approach for changing from MC to WC
Computing the Viewing Transformation: Example

\[
\begin{align*}
(1 & 0)^T_{WC} = (0.21 & -0.98)^T_{EC} \\
(0 & 1)^T_{WC} = (0.98 & 0.21)^T_{EC} \\
(0 & 0)^T_{WC} = (-3.25 & 17.00)^T_{EC}
\end{align*}
\]

\[
M_{WE} = \begin{pmatrix}
0.21 & 0.98 & -3.25 \\
-0.98 & 0.21 & 17.00 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
M_{MW} = \begin{pmatrix}
1 & 0 & 3 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
M_{ME} = M_{WE} \cdot M_{MW} = \begin{pmatrix}
0.21 & 0.98 & 0.32 \\
-0.98 & 0.21 & 14.69 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
P_E = M_{ME} \cdot P_M = \begin{pmatrix}
0.21 & 0.98 & 0.32 \\
-0.98 & 0.21 & 14.69 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
2.0 \\
1.0 \\
1.0
\end{pmatrix} = \begin{pmatrix}
1.72 \\
12.94 \\
1
\end{pmatrix}
\]

Projection
Projection: Overview

- Now, the scene is transformed to the EC system
- Next, the scene must be projected onto the view plane
- This is done in several steps
 - Selecting the projection type
 - Selecting center/direction of projection
 - Computing the view volume
 - Transforming the view volume into a canonical representation
 - Projection onto the viewplane

Projection: Introduction

- Projections map points from \(n \) dimensions to \(m \) dimensions, with \(m < n \).
 - Here: from 3D to 2D
- Points are projected along straight lines, called projectors, onto the projection plane
 - Perspective projection: projectors go through a single point
 - Parallel projection: projectors are parallel
Parallel Projection: Properties

- Objects appear at the same size irrespective of distance
- Lines map into lines
- Maintains distances but not angles
 - Angles only maintained for lines parallel to the viewplane
 - However, parallel lines remain parallel

Parallel Projection: Orthographic

- Projectors are perpendicular to the viewplane
- Frequently used orthographic projections have a viewplane perpendicular to a principal axis
 - front elevation
 - top elevation (plan view)
 - side elevation
Parallel Projection: Orthographic

- Axonometric orthographic projections have a viewplane that is not perpendicular to a principal axis
 - Show more than one side
 - Uniform foreshortening, i.e. unlike perspective projection does not depend on depth of a point
 - Isometric projection is an axonometric projection where viewplane has same angle with all axes

Parallel Projection: Oblique

- Projectors are not perpendicular to the viewplane
 - For viewplane perpendicular to an axis
 - Combination of plan-view projection and axonometric projection
 - Shows faces parallel to viewplane with proper length and angles
 - Uniform foreshortening of faces non-parallel to viewplane
Parallel Projection: Oblique

- Angle between viewplane and projectors determines foreshortening
 - 45 degrees: Cavalier projection
 - All axis appear at true length
 - Easy to measure lengths, but looks unrealistic
 - 63.4 degrees: Cabinet projection
 - Lines perpendicular to the viewplane are shortened to half length
 - Closer to perspective display

Perspective Projection: Properties

- Distant objects appear smaller than close ones
 - Perspective foreshortening

- Lines map into lines

- Distances and angles are not maintained
 - In particular parallel line do not remain parallel
 - Angles are maintained only for lines parallel to the view plane
Perspective Projections: Vanishing Points

- Parallel lines not parallel to the view plane intersect in a single point: the \textit{vanishing point} for those lines
 - Vanishing points can be used to construct perspective drawings

Perspective Projection: Vanishing Points

- Lines parallel to one of the axes converge in a \textit{principal vanishing point}

- Number of principal vanishing points equals the number of axes intersected by the view plane.
 - In 3D there are up to 3 principal vanishing points.
 - Most frequently used are 1 and 2 vanishing points
 - Three vanishing points add little realism over two vanishing points
Perspective Projection: One-point Perspective

Perspective Projection: 1 Vanishing Point
Perspective Projection: Two-Point Perspective

Perspective Projection: 2 Vanishing Points
Perspective Projection: 3 Vanishing Points

Projection Types: Summary

Planar Geometric Projections

Parallel Projections
- Orthographic
 - Axis-Parallel
 - Top View
 - Front View
 - Side View
 - Axonometric
 - Dimetric
 - Tretric
 - Isometric

Perspective Projections
- One-Point Perspective
- Two-Point Perspective
- Three-Point Perspective

Cavalier
Cabinet
Projections: Mathematical Treatment

How can we describe all these types of projections?

Overview:
- Define a suitable coordinate system
- Compute the mapping of points from 3-space on the viewplane
- Determine matrix form

Projection: Eye Coordinate System

Viewplane: z=0
- Viewing direction down negative z-axis

Up vector: y-axis

Project onto z=0 plane
Orthographic Projection

- Projection by "dropping" z-coordinate

\[
P_s = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot P_E
\]

\[
P_s = M_{oz} \cdot P_E
\]

- Projection along other axes can be achieved similarly.

- This matrix will be the final part of all other projections.

Oblique Projections: 2D Explanation

- Two-step process
 - Oblique transformation
 - Shear along the x-axis
 - Orthographic projection along the z-axis
Oblique Projection: 3D Analysis

\[P = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[P_E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & b & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

\[P_s = \text{SH}(a,b) \cdot P \]

Oblique Projection: 3D Analysis (cont'd)

\[f = \cot \beta \quad \text{(Foreshortening factor)} \]

\[M_{\text{obz}} = \begin{pmatrix} 1 & 0 & -a & 0 \\ 0 & 1 & -b & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & f \cos \alpha & 0 \\ 0 & 1 & f \sin \alpha & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \]

© Bengt-Olaf Schneider, 1999
Two-Step Process

- The two-step process is also used with other projections, in particular with perspective projection.
 - First projection transformation, i.e. distortion of objects
 - Then, orthographic projection

- This a typical divide-and-conquer approach
 - Partition problem into simpler subproblems

Perspective Projection

- We will look at a simple and common case
 - Viewplane at \(z = 0 \)
 - Center of projection at \(z = d \)
 - This can always be ensured with the appropriate combination of viewing and projection transformations!

- Analysis of a general projection
 - Center of projection off the z-axis
 - Line through center of projection and center of window not perpendicular to viewplane
 - Parallel and perspective projections

- See Foley et al. or backup charts at the end of this chart set.
Perspective Transformation

\[
\frac{x'}{x} = \frac{d}{d-z} \quad ; \quad \frac{y'}{y} = \frac{d}{d-z}
\]

\[
\Leftrightarrow
\]

\[
x' = \frac{x}{1-z/d} \quad ; \quad y' = \frac{y}{1-z/d}
\]

By analogy we define

\[
z' = \frac{z}{1-z/d}
\]

\[
P' = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix} \cdot P
\]

\[
P' = M_{\text{PER}} \cdot P
\]

Perspective Projection

Perform orthographic projection after perspective transformation

\[
P' = M_{\alpha} \cdot M_{\text{PER}} \cdot P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{bmatrix} \cdot P
\]
Perspective Projection: Vanishing Points

- Mapping of points at infinity

\[
\text{VP} = \mathbf{M}_{\text{PER}} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1/d \end{pmatrix} \Rightarrow \text{vp} = \begin{pmatrix} 0 \\ 0 \\ 1/d \end{pmatrix}
\]

- Note that the vanishing point for lines parallel to the direction of projection (z-axis) is reflection of the center of projection at the view plane.

Perspective Transformation: Space Distortion

- Remember: Perspective projection is a combination of perspective transformation and orthographic projection
 - Distant objects appear smaller
 - Lines along the viewing direction map into parallels to the z-axis.
 - View frustum is transformed into a box
- Space is increasingly "squashed" as z grows.
Perspective Transformation: Coordinate Mapping (1)

The perspective transformation remaps z!

$$P' = M_{\text{PER}} \cdot P \iff \begin{pmatrix} X' \\ Y' \\ Z' \\ W' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \Rightarrow \begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} X'/W' \\ Y'/W' \\ Z'/W' \end{pmatrix}$$

$$Z' = z, \ W' = 1 - z/d, \ z' = \frac{z}{1 - z/d} = \frac{1}{1/z - 1/d}$$

$z: [-\infty, 0] \rightarrow z': [-d, 0]$
$z: [0, d] \rightarrow z': [0, +\infty]$
$z: [d, +\infty] \rightarrow z': [+\infty, -d]$
Perspective Transformation: Coordinate Mapping (3)

- The perspective transformation remaps z.
 - Objects extending from behind the eye to in front of the eye.
 - This requires special attention unless any objects (or parts of objects) behind the eye are eliminated, i.e. clipped.
 - Therefore, we introduce clip planes to reject points behind the eye.

Perspective Transformation: Viewpoint at the Origin (1)

- Transform coordinate system such that $z = d$ maps to $z = 0$.
 - Translate coordinate system by $+d$ along the z-axis.
Perspective Transformation:

Viewpoint at the Origin (2)

- Transform coordinate system such, that \(z = d \) maps to \(z = 0 \).
 - Translate coordinate system by \(+d\) along the z-axis.

\[
\tilde{P}' = \tilde{M}_{\text{PER}} \cdot \tilde{P} = M_{\text{PER}} \cdot T_z(d) \cdot P
\]

\[
\tilde{M}_{\text{PER}} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1/d & 1
\end{pmatrix} \cdot \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d \\
0 & 0 & -1/d & 0
\end{pmatrix}
\]

Clipping

- Clipping is the process of eliminating parts of the scene outside the view volume.
- Clipping serves multiple purposes
 - Elimination of "fake" objects, that are wrapped in front of the eye by the perspective transformation.
 - Reduction of geometry that is processed during rasterization.
 - Prevention of numerical problems for objects outside the view volume.
 - Decrease of visual clutter by removal of close and distant objects.

- The view volume is delimited by clipping planes.
 - Reasonable approximation to human view volume, that is described by overlapping view cones.
 - Matches the view volume of a photographic camera.
Clipping: View Volume

- Clipping planes define the extent of the view volume.
 - Perspective view volume a.k.a. view frustum
 - Front and back clipping planes a.k.a. hither and yon.
 - Front and back clipping planes are optional.

Clipping Algorithm

- Each object must be intersected with each clip plane.
- Many objects are delimited by edges or polygons.

- Edge-plane intersection:
 - Straight-forward process
 - However, intersection of lines with arbitrary planes is compute-intensive.

- Therefore, we define a *canonical view volume*.
 - Intersection calculations are simplified
 - Transformation to the canonical view volume is "free". It can be combined with the viewing transformation
Computing a Canonical View Volume

- Definition of canonical view volume
- Transformation of the view volume after viewing transformation into the canonical view volume
- Process is known as **normalizing** the view volume
 - Coordinates are called Normalized Device Coordinates (NDC)

- Similar procedure for parallel and perspective projection
 - We will treat them separately

Normalization: Parallel Projection
Normalization: Parallel Projection (1)

Axis-aligned box

- Right, Left \(x = +/-1 \)
- Top, Bottom \(y = +/-1 \)
- Front, Back \(z = 0, -1 \)

- Much simpler intersection calculations.
- Cost of computing canonical view volume is amortized over many objects.

Normalization: Parallel Projection (2)

View volume after viewing transformation:

- Viewing direction along negative z-axis
- Clip planes asymmetric around z-axis and not aligned with \(z = 0 \).

X and Y clipping planes define a window.

- Center of the window may be displaced from the origin.
- Width and height determine the window aspect ratio.
- The window will eventually get mapped to the viewport.
Normalization: Parallel Projection (3)

Steps to create the canonical view volume from the view volume after the viewing transformation:

- Translate the view volume such that the front clipping plane lies in the plane $z = 0$.
- Translate and scale such that the other clip planes become the canonical clip planes.

Normalization: Parallel Projection (4)

- Center of window is at $C = (C_x, C_y, C_z)^T$
- Window has the dimensions $W \times H \times D$
- Then we get for the normalization transformation:

$$N_{\text{PAR}} = S \cdot T = \begin{bmatrix} 2/W & 0 & 0 & 0 \\ 0 & 2/H & 0 & 0 \\ 0 & 0 & 1/D & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & -C_x \\ 0 & 1 & 0 & -C_y \\ 0 & 0 & 1 & -C_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2/W & 0 & 0 & -2C_x/W \\ 0 & 2/H & 0 & -2C_y/H \\ 0 & 0 & 1/D & -C_z/D \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Normalization: Perspective Projection

Normalization: Perspective Projection (1)

- Truncated pyramid with tip at the origin
 - Right, Left $x = +/-z$
 - Top, Bottom $y = +/-z$
 - Front, Back $z = z_{\text{MIN}}, -1$

Diagram showing a truncated pyramid with the origin at the tip, and the projection onto the X, Y, and Z axes with the range z_{MIN} to -1.
Normalization: Perspective Projection (2)

- **View volume after viewing transformation:**
 - Viewing direction along negative z-axis
 - Clip planes asymmetric around z-axis and not aligned with $z = 0$.

- **X and Y clipping planes define a window.**
 - Center of the window may be displaced from the origin.
 - Width and height determine the window aspect ratio.
 - The window will eventually get mapped to the viewport.

Normalization: Perspective Projection (3)

- **Steps to create the canonical view volume from the view volume after the viewing transformation:**
 - Translate the view volume such that the center of projection lies at the origin
 - Translate and scale such that the other clip planes become the canonical clip planes.
Normalization: Perspective Projection (4)

- Center of projection is at origin
- Window has the dimensions $W \times H \times D$
- Then we get for the normalization transformation:

\[
N_{PER} = S \cdot T = \begin{pmatrix}
\frac{2}{W} & 0 & 0 & 0 \\
0 & \frac{2}{H} & 0 & 0 \\
0 & 0 & 1/D & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 -d & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} = \begin{pmatrix}
\frac{2}{W} & 0 & 0 & 0 \\
0 & \frac{2}{H} & 0 & 0 \\
0 & 0 & 1/D & -d/D \\
0 & 0 & 0 & 1
\end{pmatrix}
\]

Perspective Division (1)

- After normalization, perspective transformation turns the canonical viewing frustum into a axis-aligned box.
- We would like to convert that box into the canonical view volume for the parallel projection.
- First: Compute z'_{MIN} ...
Perspective Division (2)

\[\mathbf{\tilde{M}}_{\text{PER}} \cdot (\text{CP - top, CP - bot, CP - front, CP - back}) \quad \text{for } d = 1 \]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
\begin{pmatrix}
x & x & x & x \\
-z & z & y & y \\
z & z & z_{\text{MIN}} & -1 \\
1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
x & x & x & x \\
-z & z & y & y \\
z+1 & z+1 & z_{\text{MIN}} + 1 & 0 \\
-z & -z & -z_{\text{MIN}} & 1
\end{pmatrix}
\]

Top: \(y = 1 \)
Bottom: \(y = -1 \)
Front: \(z = -(z_{\text{N}}+1)/z_{\text{N}} \)
Back: \(z = 0 \)

Perspective Division (3)

- No adjustment of necessary for X and Y dimensions
- Z dimension:
 - Near clip plane farther from viewer than far clip plan
 - Z orientation reversed
 - Depth range not 0 ... -1
 \[-(z_{\text{MIN}}+1)/z_{\text{MIN}} = -1 - 1/z_{\text{MIN}} < -1 \quad \text{for} \quad 0 > z_{\text{MIN}} > -1\]
- Steps:
 - Reverse orientation by reflection on \(z=0 \) and scale to depth = 1
 - Transform so that near clip plane maps to \(z=0 \)
Perspective Division (4)

\[M = T_z \cdot S \cdot \tilde{M}_{PER} \]

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{z_{\text{MIN}}}{z_{\text{MIN}} + 1} & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}
\cdot
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \frac{z_{\text{MIN}}}{z_{\text{MIN}} + 1} & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}
\]

Viewport Mapping (1)

- Now both, parallel and perspective transformation have yielded the same normalized view volume.
- Final step: Map the normalized device coordinates to screen coordinates

Terminology (to be consistent with the textbook)

- Window: Rectangle in World-coordinates describing (together with the projection) which objects are visible
 - Do not confuse with on-screen windows, managed by the window manager !!!
- Viewport: On-screen rectangle describing where the image will appear on the screen
Viewport Mapping (2)

- **Window in world coordinates:**
 - Width W_w and Height H_w
 - Aspect ratio $A_w = W_w / H_w$

- **Viewport in screen coordinates:**
 - Width W_v and Height H_v
 - Aspect ratio $A_v = W_v / H_v$

- **Window aspect ratio should be maintained**
- **If the aspect ratios are not equal, several choices**
 - Fit the window into the viewport, leaving part of the viewport empty
 - Fill the viewport, clipping off parts of the window

Viewport Mapping (3)

- **Transformation to the canonical view volume has destroyed the window aspect ratio (now: unit square)**
- **Window aspect ratio can be restored by non-uniform scaling of the unit square.**

- **Steps:**
 - Restore window aspect ratio (normalized device coordinates)
 - Compare with viewport aspect ratio
 - Determine appropriate scale factor (device coordinates)
 - Translate adjusted window to viewport
Viewport Mapping (4)

- Assuming that \(A_w > 1 \) and that \(W_v/W_w < H_v/H_w \)
 - Center of viewport at \((v_x, v_y)\)

\[
M_{NV} = T \cdot S_v \cdot S_N = \begin{pmatrix} 1 & 0 & v_x \\ 0 & 1 & v_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} W_y/W_w & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/A_w & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} W_y/W_w & 0 & v_x \\ 0 & 1/A_v & v_y \\ 0 & 0 & 1 \end{pmatrix}
\]

- Sometimes screen coordinates are left-handed coordinate systems, e.g. origin at top-right corner and z-axis pointing out of the screen.
 - Then the y-axis must be reflected during the viewport mapping.

That's basically it!

- To summarize ...
Modeling and Viewing

- **Modeling**
 - Transforms objects from local model coordinates to world coordinates
 - Typically done with linear transformations

- **Viewing**
 - Places and orients the camera in world coordinates
 - Look down negative z-axis of EC
 - Up vector along y-axis of EC

Clipping

- Clip planes define a view volume
- Clipping intersects objects with view frustum
- Clipping occurs in normalized device coordinates
- Canonical view volume is delimited by planes parallel or at 45° angle to coordinate axes
- Canonical view volume facilitates clipping
Projection and Viewport Mapping

► Perspective Transformation
 ● Distort objects such that view volume becomes a rectilinear box
 ● Remap the transformed perspective canonical view volume into the parallel canonical view volume.

► Parallel Projection
 ● "Drop" the z-coordinate, i.e. project onto z=0.

► Viewport Mapping
 ● Map the projected scene from normalized device coordinates to screen coordinates.
OpenGL: Rendering Pipeline

- Very similar to our discussion of the various transformations
- Single step for modeling + viewing transformation
 - World coordinates are not explicitly specified
- Projection Matrix creates canonical view volume

OpenGL: Viewing Transformation

- All modeling transformations
 - `glRotate()`, `glTranslate()`, `glScale()`, `glLoadMatrix()`, ...
- `gluLookAt()`
 - Specifies in current coordinate system: viewpoint, look-at point and up-vector
 - Viewpoint and Look-at point specify viewing direction
 - Can be re-implemented using standard modeling transformations
OpenGL: Projections

- **glOrtho()**
 - Specifies orthographic view volume, delimited by 6 clip planes

- **glFrustum()**
 - Specifies perspective view volume as the position and size of the near clip window (and implicitly the viewpoint).

- **gluPerspective()**
 - Wrapper around glFrustum() to more conveniently define a perspective view volume based on ...
 - field of view and aspect ratio of the view volume
 - distance of the near and far clip planes

Summary

- **Mathematical description of**
 - Viewing Transformations
 - Clipping Volume
 - Projections (parallel and perspective)
 - Viewport mapping
Homework

- OpenGL rendering primitives
- Foley et al. Chapter 16

Next Week ...

- Lighting Models

\[I = k_A \cdot I_A + k_D \cdot \sum_{i=0}^{l} I_i \cdot (N \cdot L_i) + k_S \cdot \sum_{i=0}^{l} I_i (R \cdot E)^n \]
Backup Charts

- General Projection

Projection: General Case (1)

- Viewplane at z=z_p
- Center of projection C off the z-axis
Projection: General Case (2)

\[P' = C + \lambda (P - C) ; \quad z' = z_p \]

\[\Rightarrow \]

\[z' = z_p = z_c + \lambda (z - z_c) \]

\[\Rightarrow \]

\[\lambda = \frac{z_p - z_c}{z - z_c} ; \quad \Lambda = 1/\lambda = \frac{z - z_c}{z_p - z_c} \]

\[\Rightarrow \]

\[x' = x_c + \lambda (x - x_c) \]

\[= \frac{x_c \Lambda + (x - x_c)}{\Lambda} = \frac{x + x_c (\Lambda - 1)}{\Lambda} \]

\[\frac{x + x_c \frac{z - z_p}{z_p - z_c}}{\frac{x - x_c \frac{z - z_p}{z_p - z_c}}{\Lambda}} \]

\[y + z \frac{y_c}{z_p - z_c} - \frac{y_c \cdot z_p}{z_p - z_c} \]

\[y' = \frac{y + z \frac{y_c}{z_p - z_c} - \frac{y_c \cdot z_p}{z_p - z_c}}{\Lambda} \]

Projection: General Case (3)

\[x' = \frac{1}{\Lambda} \left(x + z \frac{x_c}{z_p - z_c} - \frac{x_c \cdot z_p}{z_p - z_c} \right) \]

\[y' = \frac{1}{\Lambda} \left(y + z \frac{y_c}{z_p - z_c} - \frac{y_c \cdot z_p}{z_p - z_c} \right) \]

\[z' = z_p = \frac{\Lambda}{\Lambda} = \frac{1}{\Lambda} \cdot \frac{z_p - z_c}{z_p - z_c} \]

\[= \frac{1}{\Lambda} \left(\frac{z_p}{z_p - z_c} - \frac{z_p \cdot z_c}{z_p - z_c} \right) \]

\[w' = \Lambda = \frac{z}{z_p - z_c} - \frac{z_c}{z_p - z_c} \]
Projection: General Case (4)

\[
P' = P_{\text{per}} \cdot P = \begin{pmatrix}
1 & 0 & x_C / d & -x_C \cdot z_P / d \\
0 & 1 & y_C / d & -y_C \cdot z_P / d \\
0 & 0 & x_p / d & -z_C \cdot z_P / d \\
0 & 0 & 1 / d & -z_C / d
\end{pmatrix} \cdot P
\]

Orthographic Projection: \(z_P = 0 \), \(C = \lim_{z \to \infty} (0 \ 0 \ z) \)

Cavalier Projection: \(z_P = 0 \), \(C = \lim_{z \to \infty} (z \ 0 \ z) \)

Perspective Projection: \(z_P = 0 \), \(C = (0 \ 0 \ d) \)

Perspective Transformation: Clip Planes

How are the clip planes transformed by the perspective transformation?

![Diagram of clip planes transformation](image)
Perspective Transformation: Clip Planes

- Plane at \(y = y'_B \)
- Plane at \(y = y'_T \)
- Plane at \(z = z'_B \)
- Plane at \(z = z'_F \)

\[
\begin{pmatrix}
 \frac{x \cdot d}{d - z'_F} & \frac{x \cdot d}{d - z_B} & \frac{x \cdot d}{d - z} & \frac{x \cdot d}{d - z} \\
 \frac{y \cdot d}{d - z'_F} & \frac{y \cdot d}{d - z_B} & \frac{-a \cdot d \cdot (z - d)}{d - z} & \frac{a \cdot d \cdot (z - d)}{d - z} \\
 \frac{z \cdot d}{d - z'_F} & \frac{z \cdot d}{d - z_B} & \frac{d - z}{d - z} & \frac{d - z}{d - z} \\
 \frac{z_f \cdot d}{d - z'_F} & \frac{z_f \cdot d}{d - z_B} & \frac{d - z}{d - z} & \frac{d - z}{d - z}
\end{pmatrix}
= \begin{pmatrix}
 x' & x' & x' \\
 y' & y' & y'_T & y'_B \\
 z'_F & z'_B & z' & z'
\end{pmatrix}
\]