Questions about Last Week?
Questions about Assignment?

- Comments about submission
 - Deadline is Friday, 2/26 at 5:30 pm
 Standard rules about penalties etc. apply
 - Impress us with clean code: Comments, no dead code, ...
 - Put a header with your name in every file you submit
 - Look for mechanics of submission on the webpage

Overview of Week 6

- Scan Conversion
 - lines, triangles, polygons
 - attribute interpolation and perspective correction

- Second Assignment
Scan Conversion: Overview

- Scan Conversion of an object
 - a.k.a Rasterization
 - Determine which pixels are affected by the object, i.e. which pixels must be set to display the object
 - Determine pixel value at those pixels
 - Pixel values a.k.a. pixel attributes
 - Color (RGB), Depth (Z), Alpha (A), e.g. transparency, Texture (u,v), Fog, Stencil, etc.

Scan Conversion: Primitives

- Each primitive type requires a special scan conversion procedure
 - For instance, polygons are rasterized different from circle or lines

- We will discuss
 - Points
 - Lines
 - Triangles
 - Polygons

- We will not discuss (see textbook)
 - Circles and ellipses
 - Freeform surfaces
 - Text
Scan Conversion in the Rendering Pipeline

- Scan conversion follows the geometric operations
 - Converts geometric primitives to screen primitives (pixels)
 - Scan conversion falls into 2 parts: setup calculations + rasterization

Scan Conversion: Steps

- Setup
 - Scan conversion is typically performed as an iteration
 - Setup calculates the parameters of the iteration, e.g. increments

- Determine covered pixels
 - Calculate the pixel coordinates of pixels belonging to the object
 - This is done either by testing candidate pixels or by enumerating covered pixels

- Determine pixel value
 - Given a pixel belonging to an object, calculate and assign the value of the pixel attributes

- We will discuss these steps for each primitive type
What is a Pixel? (1)

- Pixel means "Picture Element"
- A pixel is the smallest addressable unit on the screen
 - On a CRT the beam can be modulated at the granularity of a pixel
- The actual shape of a pixel depends on the device
 - CRT: Pixels are approximately round
 - LCD: Pixels are square

What is a Pixel? (2)

- Pixels are organized as rows and columns
- Screen coordinates describe pixel location
 - We will use a right-handed screen coordinate system
- Pixel addresses are integer values, denoting the location of the pixel center
 - A pixel covers a 1x1 area
 - Pixel corners lie on [x +/- 0.5, y +/- 0.5]
What is a Pixel? (3)

- There are other ways to define a pixel
 - For instance: lower-left corner is on integer coordinates
 - Then, pixel centers lie on half-integer coordinates

- Also, pixel coordinates may be defined differently
 - Left-handed coordinate systems

Scan Conversion of Points

- Points are described as a single coordinate in screen coordinates
- Set the pixel whose pixel center is closest to the point
 - Round the points coordinates to the next pixel coordinates
- Points have one a single value for each attribute
 - Constant color, depth etc. for each point
Scan Conversion of Lines (1)

- **Rasterization of a line** computes pixels on or near the ideal, infinitely thin, straight line:
 - Most pixels lie off the line
 - Raster lines are not straight
 - Lines are not infinitely thin

- **Requirements**
 - Centered around ideal line
 - For thin lines, one pixel thick
 - For slopes of -1 to +1, set exactly one pixel per column
 - Monotonous behavior

Scan Conversion of Lines (2)

- **Requirement:** Only one pixel per column (row)

- **X-major lines**
 - Slope between -1.0 and +1.0
 - Advances faster in X than Y

- **Y-major line**
 - Slope between +1.0 (through infinity) and -1.0
 - Advances faster in Y than X
Scan Conversion of Lines (3)

Simple Approach:
- Determine whether line is of X or Y major form
- For each X coordinate along the line compute the Y coordinate

\[\Delta = x_E - x_S \quad ; \quad \Delta y = y_E - y_S \]

If \(\Delta x \geq \Delta y \)
then // X - major
\[m = \frac{\Delta y}{\Delta x} \]
for \((x = x_S ; x \leq x_E ; x + +) \)
\[y = y_S + m(x - x_S) ; \]
setpixel(round(x), round(y)) ;
else // Y - major
\[m = \frac{\Delta x}{\Delta y} \]
for \((y = y_S ; y \leq y_E ; y + +) \)
\[x = x_S + m(y - y_S) ; \]
setpixel(round(x), round(y)) ;

Scan Conversion of Lines (4)

Simple Approach requires ...
- floating point calculations
- one multiplication per pixel (\(\Delta y/\Delta x \) or \(\Delta x/\Delta y \) can be precomputed !)
- one float-to-int conversion

This is expensive and slow!

We would like to produce the same result and ...
- avoid multiplications by using iterative additions,
- use only integer calculations (Bresenham algorithm)
Scan Conversion of Lines (5)

- **Digital Differential Analyzer (DDA)**
 - Incremental computation of pixel coordinates
 - Relies on
 \[y_{x+1} = m(x+1) + b = mx + b + m = y_x + m \]
 - 1 floating point addition and 2 float-to-int conversions per pixel
 - Next we will eliminate the floating point computations

\[
\Delta x = x_E - x_S \quad ; \quad \Delta y = y_E - y_S
\]

If \(\Delta x \geq \Delta y \)

then // X - major

\[
m = \frac{\Delta y}{\Delta x} ;
\]

for \((x = x_S, \ y = y_S \ ; \ x \leq x_E ; \ x++) \)

\[
y = y + m ;
\]

setpixel(round(x), round(y)) ;

else // Y - major

\[
m = \frac{\Delta x}{\Delta y} ;
\]

for \((x = x_S, \ y = y_S \ ; \ y \leq y_E ; \ y++) \)

\[
x = x + m ;
\]

setpixel(round(x), round(y)) ;

Scan Conversion of Lines (6)

- **Midpoint Algorithm (Bresenham algorithm)**
 - Basic idea: Incrementally compute an error term \(d \)
 - Chose next pixel \(H \) if the line is above \(M \) and otherwise pixel \(L \)
 - Works only for lines with slopes of 0 ... +1 (first octant)
Scan Conversion of Lines (7)

- Line can be represented in two forms:
 \[\ell: \ ax + by + c = 0 \] (Implicit form)
 \[\ell: \ y = mx + B \] (Slope - intercept form)

- Comparing coefficients:
 - Using \(m = \Delta y / \Delta x \)

- Distance of a point from the line:
 - \(F = 0 \) for points on the line
 - \(F > 0 \) for points below the line
 - \(F < 0 \) for points above the line

\[
F(x, y) = ax + by + c \\
= \Delta y \cdot x - \Delta x \cdot x + B \cdot \Delta x
\]

Scan Conversion of Lines (8)

- Midpoint criterion:
 - Determine position of \(M \) with respect to the line
 - Compute sign of error \(d \)
 - Determine pixel
 - If \(d < 0 \) choose H
 - If \(d > 0 \) choose L

- Next, compute the value of \(d \) for the next pixel \(x_{i+2} \)
\[
d_{i+1} = F(M) = F(x_M, y_M) \\
= F(x_p + 1, y_p + 1/2) \\
= a \cdot (x_p + 1) + b \cdot (y_p + 1/2) + c
\]
Next, compute the value of \(d \) for the next pixel \(x_{i+2} \)
- This depends on which pixel (L or H) was chosen
- If L was chosen
 \[
 d_{i+2} = F(x_p + 2, y_p + 1/2) \\
 = a \cdot (x_p + 1) + b \cdot (y_p + 1/2) + c + a
 \]
- If H was chosen
 \[
 d_{i+2} = F(x_p + 2, y_p + 3/2) \\
 = a \cdot (x_p + 2) + b \cdot (y_p + 3/2) + c + a + b
 \]

The new \(d \) is computed incrementally as:
\[
\begin{align*}
 d_{i+2} &= \begin{cases}
 d_{i+1} + a & \text{if } y_{i+2} = y_L \\
 d_{i+1} + a + b & \text{if } y_{i+2} = y_R
 \end{cases}
\end{align*}
\]

How is \(d \) initialized?
- \((x_S, y_S)\) is on the line
- Therefore: \(F(x_S, y_S) = 0 \).
- In practice we only care about the sign of \(d \)
- Therefore, we use \(d' = 2d \) to avoid the division by 2.

\[
\begin{align*}
 d_1 &= F(x_S + 1, y_S + 1/2) \\
 &= a \cdot (x_S + 1) + b \cdot (y_S + 1/2) + c \\
 &= a \cdot x_S + b \cdot y_S + c + (a + b/2) \\
 &= F(x_S, y_S) + a + b/2 \\
 &= a + b/2
\end{align*}
\]
Scan Conversion of Lines (11)

Putting it all together:

- **Initialization:**

  ```plaintext
dx = x_end - x_start;
dy = y_end - y_start;
d = 2*dy - dx;
incr_L = 2*dy;
incr_H = 2*(dy-dx);
  ```

- **Iterate over all columns:**

  ```plaintext
for (x = x_start ; y = y_start ;
x < x_end ; x++)
{
  WritePixel (x,y);
  if (d <= 0)
    d += incr_L ;
  else
    { d += incr_H ;
      y++ ;
    }
}
  ```

Scan Conversion of Lines (12)

Endpoint Order

- If all pixels along the line are set, adjacent line segments will touch first/last pixel multiple times

- Creates problems with some pixel algorithms, e.g. transparency

- Therefore, typically the first/last is not drawn
Scan Conversion of Triangles (1)

- Determine all pixels that belong to a triangle
 - Point sampling: Generate only pixels with center inside the triangle
 - Pixels exactly on the triangle border require special tie-breaker rule
 - This ensures that a pixel is not touched twice by adjacent triangles
 - Rasterization rules for triangles and lines are different

Scan Conversion of Triangles (2)

- Triangles are scan converted by finding the limits of covered spans
 - A span is a continuous, horizontal range of pixels
 - Starting and ending pixels are computed incrementally
 - Edge slopes are represented with floating-point or fixed-point numbers

- Pixels in between the edge pixels are filled in
Scan Conversion for Triangles (3)

- Computing the edge pixels:
 - Compute X-coordinates of edge in current scanline
 - Incrementally computed using edge slopes dx/dy
 - Adjust this coordinate to get the pixel inside the triangle
 - Left edge: nudge to the right --- Right edge: nudge to the left

\[
\begin{align*}
 x_S &= \left\lfloor x_L \right\rfloor \\
 x_E &= \left\lfloor x_R \right\rfloor
\end{align*}
\]

Scan Conversion of Triangles (4)

- Non-integer coordinates and slopes
 - The application or clipping may produce vertices that do not fall onto pixel centers
 - However, in screen coordinates all quantities are represented on a fixed grid
 - Slopes are therefore always rational numbers, i.e. ratio of numbers on that fixed grid
 - Numbers are represented using a fixed-point representation
 - Vertex positions and slopes
 - Number of integer bits determined by the number of grid positions
 - Number of fractional bits is determined by smallest slope
Scan Conversion of Triangles (5)

- Tie-breaker rule
 - Include pixels on a top edge
 - Include pixel on a triangle vertex, if the vertex is the right vertex of the edge and does not lie below the left vertex (top-right vertex)
 - Still does not catch all possible (pathological) cases

Scan Conversion of Triangles (6)

- Computing interior pixels
 - Iterate from starting pixel to ending pixel:
 - for (x=x_s; x<=x_e; x++) setpixel (x, y_i);
Scan Conversion of Triangles (7)

Triangle Terminology

- Top Vertex
- Trailing Edge
- Top Half
- Leading Edge
- Bottom Half
- Trailing Edge
- Bottom Vertex
- Middle Vertex
- Top Vertex
- Bottom Vertex

Scan Conversion of Triangles (8)

Triangle Types

- Left Triangle
- Right Triangle
- Top Triangle
- Bottom Triangle
Scan Conversion of Triangles (9)

Putting it all together (for left-triangle):

- Initialization:

```c
// Determine leading edge
// & midpoint of trailing edge
x_top = ... ; y_top = ... ;
x_bot = ... ; y_bot = ... ;
x_mid = ... ; y_mid = ... ;
slope_lead = ... ;
slope_trail1 = ... ;
slope_trail2 = ... ;
```

- Iterate (only top half):

```c
x_lead = x_trail = x_top ;
slope_trail = slope_trail1 ;
for (y=y_top, y < y_mid ; y++)
{  
  xs = ceil(x_lead) ;
  xe = floor(x_trail) ;
  setpixel (xs, y) ;
  for (x=xs ; x < xe ; x++)
  {  
    setpixel (x,y) ;
    x_lead += slope_lead ;
    x_trail += slope_trail ;
  }
}
```

Scan Conversion of Triangles (10)

- So far, we have answered the question: Which pixels are in the triangle ?
 - Direct computation of the rasterization

- Conversely, we could have also asked: Is this pixel inside the triangle ?
 - Point-in-triangle Test
Scan Conversion of Triangles (11)

A triangle is the intersection of 3 half-planes
- Each half-plane is limited by an oriented line
 \(ax + by + c = 0 \)

Same algorithm works for all convex polygons

Scan Conversion of Polygons
Scan Conversion of Polygons

- General polygons differ from triangles
 - Not always convex
 - May have holes
 - Can be self-intersecting
 - Generally not planar

- Approaches
 - Divide & Conquer: Triangulate the polygon before scan-conversion
 - Triangulation is a difficult problem also
 - Direct rasterization

Scan Conversion of Polygons: Overview

- Extension of the triangle scan conversion algorithm
 - Works for many classes of polygons, including concave, self-intersecting polygons as well as polygons with interior holes

- Determine spans of pixels that are inside the polygon
 - Similar to triangle rasterization, we use tie-breaker rules to avoid writing a pixel twice by adjacent polygons

- Calculate the spans' start and end points incrementally
 - Calculate the intersection of polygon edges with scan lines
Scan Conversion of Polygons: Example

Scan Conversion of Polygons: Terminology

- **Active edge (AE)**
 - An edge that intersects the current scanline

- **Span**
 - Continuous set along a scanline

- **Leading/trailing edge**
 - Edge defining the left/right end of a span
Scan Conversion of Polygons:
Basic Algorithm

- Intersect all edges with the current scanline
 - This will determine the set of active edges

- Sort all intersection by increasing x and mark as leading or trailing edge

- Compute starting and ending pixel coordinates
 - Round X up/down for leading/trailing edge

- Fill pixels for all spans defined by a pair of leading/trailing edges

Scan Conversion of Polygons:
Special Cases (1)

- Horizontal Edges
 - No (unique) intersection with the scanline
 - Ignore. Let adjacent, non-horizontal edges take care of pixels on horizontal edges. Use tie-breaker rules.
Scan Conversion of Polygons: Special Cases (2)

- Clipped Polygons
 - Clipping can generate half-open spans
 - Leftmost edge-scanline intersection may be a trailing edge and/or rightmost may be a leading edge
 - If leftmost pixel is outside (inside) the first intersection is a leading (trailing) edge
 - Then alternate between leading and trailing edge

Scan Conversion of Polygons: Implementation (1)

- Simple-minded computation of intersection between edges and scanlines can be inefficient (slow)
 - Often, only a few edges intersect the active scanline
 - Neighboring scanlines tend to be intersected by the same edges (edge coherence)

- Determination of active edges can be optimized
 - Incrementally compute the intersection with the next scanline from the intersection point with the current scanline (see textbook Fig. 3.26)
 - Maintain a global edge table (ET) containing all edges
 - Maintain an active edge table (AET) containing all edges intersecting the active scanline
 - Update the ET and AET for every new scanline
Scan Conversion of Polygons: Implementation (2)

- **Edge Table (ET)**
 - Bucket sorted list of all edges, with a bucket for each scanline
 - Edges are sorted by their minimum (maximum) Y-coordinate

- **Active Edge Table (AET)**
 - List of edges intersecting the current scanline
 - Sorted by increasing X-coordinate of the intersection
 - For each new scanline Y
 - Update X coordinate of intersection for active edges
 - Insert edges from the ET into the AET that become active, i.e. for which \(Y_{\text{min}} = Y \)
 - Remove edges from the AET that are no longer active, i.e. for which \(Y_{\text{max}} = Y \)
 - Resort AET
 - Compute starting and ending coordinates for spans defined by the active edges
 - Fill in pixel spans

Attribute Interpolation
Attribute Interpolation

- So far, we have only determined which pixels are covered by a primitive

- Pixel values are determined by primitive attributes
 - Attributes can be computed different ways, but most common is linear or bilinear interpolation based on values at the vertices
 - In the following, we will treat a generic attribute A
 - Color, Texture, Normal vector, Transparency, ...
 - Each component is interpolated individually
 - Can be applied to lines, triangles and polygons

Linear Interpolation (1)

- Attribute defined at the vertices
- $A(x,y)$ defines a plane in x-y-A space
Linear Interpolation (2)

Computing linear interpolation
- Attribute value is a linear function in x, y
- \(A(x,y) = ax + by + c \)
- \(a \) describes the change from \(x \) to \(x+1 \), a.k.a. x gradient or x slope
- \(b \) describes the change from \(y \) to \(y+1 \), a.k.a. y gradient or y slope
- \(c \) is the value of \(A \) at the origin

Computing the parameters
- System of linear equations:
- Solve using preferred method
- E.g. Cramer's rule

\[
\begin{pmatrix}
 x_1 & y_1 & 1 \\
 x_2 & y_2 & 1 \\
 x_3 & y_3 & 1
\end{pmatrix}
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
= \begin{pmatrix}
 A_1 \\
 A_2 \\
 A_3
\end{pmatrix}
\]

Linear Interpolation (3)

\[
a = \frac{A_1(y_2 - y_3) - A_2(y_1 - y_3) + A_3(y_1 - y_2)}{x_1(y_2 - y_3) - x_2(y_1 - y_3) + x_3(y_1 - y_2)}
\]

\[
b = \frac{-A_1(x_2 - x_1) + A_2(x_1 - x_3) - A_3(x_1 - x_2)}{x_1(y_2 - y_3) - x_2(y_1 - y_3) + x_3(y_1 - y_2)}
\]

\[
c = \frac{x_1(A_3y_2 - A_2y_3) - x_2(A_3y_1 - A_1y_3) + x_3(A_2y_1 - A_1y_2)}{x_1(y_2 - y_3) - x_2(y_1 - y_3) + x_3(y_1 - y_2)}
\]
Bilinear Interpolation (1)

- Attribute defined at vertices
- \(A(x,y) \) defines piecewise linear in x-y-A space
- Generally, not rotation-invariant !!

![Bilinear Interpolation Diagram](image)

Bilinear Interpolation (2)

- Interpolate attribute along starting and trailing edge
 - Use algorithms developed earlier for scan conversion
 - Use constant \(\frac{dA}{dy} \) for each edge (a.k.a. edge slope)
 - Adjust attribute to pixel centers

- Interpolate attribute along scanline between starting and trailing edge pixels
 - Compute \(\frac{dA}{dx} \) for each span (a.k.a. x-gradient or x-slope)

- Integrates nicely with scanline rasterization algorithms
Linear vs. Bilinear Interpolation

- Linear interpolation only defined over triangles
- 4+ vertices need higher-order polynomial interpolation
- Bilinear interpolation provides a piece-wise linear approximation to this polynomial
- Bilinear interpolation fits with scanline rasterization
- Bilinear interpolation is not rotation-invariant
- Rotation invariance can be ensured by triangulation

Perspective Projection (1)

- Perspective projection plays havoc with linearly interpolated parameter values
 - Non-linear mapping of depth values also affects attributes
 - Attribute ranges is compressed with increasing distance
Perspective Projection (2)

- This effect has been overlooked a long time because it was not very apparent with Gouraud / Phong shading.
- Texture mapping makes these errors very noticeable.
 - Linear interpolation after perspective projection generates the wrong attribute values.

Perspective Projection (3)

- Attributes are defined at the vertices in object coordinates (eye or world coordinates).
- Attribute interpolation occurs in screen coordinates, i.e. after the perspective division.
 - The attribute values at the vertices are correct by construction.
 - Linear interpolation of attributes produces wrong values.

Problem:
Given a point in screen coordinates, what is the attribute value corresponding to this point?
For this we need to find out which attribute value belongs to this point in object space.
Perspective Projection (4)

- Points in object space:
 \[P_o = (x_o, y_o, z_o, 1)^T \]

- Points in clip space:
 \[P_c = (x_c, y_c, z_c, w_c)^T \]

- Points in screen space:
 \[P_s = (x_s, y_s, z_s, 1)^T \]

- Determine perspective transformation and division affect a point’s representation.

Perspective Projection (5)

- Going from object space to screen space:
 \[
 P_o = (x_o, y_o, z_o, 1)^T \xrightarrow{M} P_c = (x_c, y_c, z_c, w_c)^T \xrightarrow{\frac{1}{w}} P_s = \left(\frac{x_c}{w_c}, \frac{y_c}{w_c}, \frac{z_c}{w_c}\right)^T
 \]

- Going back from screen space to object space:
 \[
 P_o' = (x_o'w_o, y_o'w_o, z_o'w_o, w_o)^T \xleftarrow{M^{-1}} P_c = (x_s, y_s, z_s, 1)^T \xleftarrow{} P_s = (x_s, y_s, z_s)^T
 \]

- Note: \(M \) and \(M^{-1} \) are perspective matrices, i.e. they both change the \(w \) component
- Tilde notation indicates that \(w \neq 1 \).
Perspective Projection (6)

- To determine the objects space point \(P_0 \) corresponding to the point \(P_s \) in screen space, \(P_s \) must be transformed by the inverse of \(M \).
 - A full matrix-point multiplication for every pixel is very expensive
 - There is a better way ...

\[
\vec{P}_o = M^{-1} \cdot P_s = M^{-1} \cdot \frac{P_c}{w_c} = M^{-1} \cdot \frac{M \cdot P_o}{w_c} = \frac{P_o}{w_c}
\]

\[
\vec{P}_o = (x_o w_o, y_o w_o, z_o w_o, w_o)^T = \left(\frac{x_o}{w_c}, \frac{y_o}{w_c}, \frac{z_o}{w_c}, \frac{1}{w_c} \right)^T
\]

\[
\Rightarrow w_o = 1 / w_c
\]

Perspective Projection (7)

- Now, let's look what happens to the attributes:

- Object coordinates are mapped linearly to attributes

\[
A_o = ax_o + by_o + cz_o + d = (a, b, c, d)^T \cdot (x_o, y_o, z_o, 1)^T = N \cdot P_o
\]

- Attributes are interpolated in screen space:

\[
A_s = A_1 + t \cdot (A_2 - A_1)
\]

- Similarly, points are generated by linear interpolation in screen space:

\[
P_s = P_1 + t \cdot (P_2 - P_1)
\]
Perspective Projection (8)

- Object-space attributes and screen-space points are related:
 \[A_O = N \cdot P_O = N \cdot \frac{\tilde{P}_O}{w_O} = \frac{1}{w_O} \cdot N \cdot \tilde{P}_O \]

- We define screen-space attributes as
 - Screen-space attributes are proportional to screen points \(P_s \), because \(M \) is affine

- Therefore:
 \[A_O = \frac{1}{w_O} A_S \]

Perspective Projection (9)

- Recall
 \[P_o = \frac{\tilde{P}_o}{w_o} \quad w_o = 1 / w_c \]

- For a given point in screen space, the attribute values are therefore:
 \[A_s = N \cdot \tilde{P}_o = \frac{N \cdot P_o}{w_c} = \frac{A_o}{w_c} \]
 \[A_o = \frac{A_s}{w_o} = \frac{A_s}{1 / w_c} \]

- What does that mean?
 - Initialize \(A_s \) to \(A_o / w_c \) at the vertices
 - Interpolate \(A_s \) and \(1/w_c \), then divide by \(1/w_c \) at every pixel
Perspective Projection (10)

\[A_o = A_s / 1/w_c \]

- To obtain the proper attribute value, the value obtained by linear interpolation in screen space must be divided by the value of the interpolate 1/w-component.
- The 1/w-component itself, is also obtained by linear interpolation in screen space

\[A_o = \frac{A_s}{1/w_c} = \frac{ax_s + by_s + c}{dx_s + ey_s + f} \]

- Numerator and denominator are linear function in screen X and Y
- \(A_o \) is rational function
- The computation is a hyperbolic interpolation

Perspective Projection (11)

- Summary
 - Both attributes and 1/W component are interpolated separately
 - Proper interpolation of parameters requires division at every pixel of interpolated attribute value and interpolated 1/W
 - This a very costly operation that can be avoided for shading but must be performed for texture mapping
 - Alternative:
 Subdivision of the surface to introduce more points over the surface that have the correct attribute value. Then the maximum error is reduced and linear interpolation becomes acceptable.
Summary

- Scan Conversion determines which pixels are covered by a primitive
- Primitive scan conversion must determine integer pixel coordinates
- Scan Conversion is usually done incrementally, exploiting coherence between pixels, scanlines, edges

- Various algorithms for specific primitive types:
 - Point, lines, triangles, polygons

- Attribute interpolation assigns pixel values
 - Typically also done incrementally using (bi)linear expressions
 - Attention: perspective projection requires special treatment

Short Overview of 2nd Assignment

- Apply your knowledge about viewing, clipping and scan-conversion
 - Read polygons descriptions from file
 - Display them unclipped as wireframe
 - Display them clipped against a clip volume as filled polys
 - Scan-convert them to a virtual raster screen and display this raster in front of the clip volume
 - Provide view manipulation
Homework

- Review primitive scan conversion in textbook
 - Also look at circle and ellipsis scan conversion

- Prepare for fragment processing discussion next week
 - Read OpenGL Programming Manual re Anti-aliasing and Fragment Processing (chapters 6, 9 and 10)
 - Foley et al., chapters 3.8, 14.10, 15.4, 19.3

- Study hidden-surface algorithms
 - Z-buffering, Depth-sorting algorithm, Scanline algorithms
 - Foley et al., chapters 15.2, 15.4, 15.5.1, 15.6

Next Week ...

- Fragment Processing

- Hidden-Surface Removal