How can we select targets faster?

(Practicing what we’ve learned)
Large Displays: Changing the Cursor Geometry T. Grossman & R. Balakrishnan, CHI 2005

- Area Cursor
 - Area cursor (e.g., square/circle) can make it easier to select a small object
 - But, what if multiple objects enter the cursor area?

- Bubble Cursor
 - Bubble cursor automatically changes size so that it encloses only the single closest object
 - Changes shape if needed to enclose a single target
 - Closest target computed from Voronoi diagram of objects

One of many techniques that automatically warp the position/shape/size of the cursor, dragged object, or potential targets

Large Displays: Automated Warping of Drag Targets P. Baudisch et al., Interact 2003

- Drag-and-pop
 - User starts to drag object
 - System creates proxies for potential targets in desired directions
 - Connected by “rubber band”
 - Animated closer to dragged object for Fitts’s Law “advantage”
 - User selects desired proxy
 - Faster than drag-and-drop when > 1 bezels crossed on multi-monitor wall

Issues
 - Warped targets are bunched up
 - Instant warp can be confusing

One of many techniques that automatically warp the position/shape/size of the cursor, dragged object, or potential targets

Large Displays: Manual Warping of Cursor and Drag Objects
H. Benko & S. Feiner, CHI 2005

- Multi-Monitor Mouse
 - User can warp cursor and object being dragged to a different "frame" using a trigger
 - Pointer placement in new frame
 - Fixed location (e.g., center)
 - Frame relative
 - Frame dependent (e.g., last location)
- Trigger
 - Mouse or kbd button
 - Head orientation
 - Mouse location
- Users preferred frame relative, mouse button,
- Faster crossing > 1 bezels on desktop

http://www1.cs.columbia.edu/~benko/publications/2005/Benko_MultiMonMouse_CHI05_small.avi

Large Displays: Dealing with Seams
J. Mackinlay & J. Heer, CHI 2004

- Seams between displays (e.g., bezels) can cause confusion → Make UI seam-aware
 - Take monitor geometry into account when drawing
 - Lay out objects to keep them from being obscured by seams
 - Line up arcs over seams
 - Don’t split nodes across seams

Seam-unaware Seam-aware
Stylus UIs: Crossing-Based Interfaces
J. Accot and S. Zhai, CHI 2002

- Replace *pointing at a target* with *crossing a goal*
 - Especially good for selecting thin objects
 - Recall the steering law for a fixed width straight tunnel: $MT = a + b \left(\frac{A}{W}\right)$, where W is width of tunnel

Small Displays: Indicating Off-Screen Objects
P. Baudisch & R. Rosenholtz, CHI 2003; S. Gustafson et al., CHI 2008

- Small displays make it difficult to see off-screen objects
 - *Halo*: Surround object with circular “halo” arc just big enough to be visible
 - Halo location & curvature make it easy for user to infer object position
 - Used in Second Life maps
 - *Wedge*: Later work replaces the arc with a wedge whose off-screen tip is at the object
 - Wedges can be automatically rotated to avoid overlap, unlike arcs
 - Helps disambiguate close objects

Small Devices: Finger Input

Soft Keyboards: Key Presses

- Apple iPhone
 - QWERTY
 - Multi-touch
 - Entry on key release
 - Confirmation pop-ups to address occlusion
 - Dictionary used to
 - Correct misspellings
 - Correct mistypings by weighting keys based on proximity to touch areas
 - Change sizes of letter target zones based on initial substring

http://help.apple.com/iphone/10/#/iph3c50f96e

Small Devices: Finger Input

Soft Keyboards: Strokes

- SHARK (Shorthand-Aided Rapid Keyboarding, later commercialized as ShapeWriter), Swype
 - Stroke between keys, approximating words in dictionary
 - Recognition software resolves ambiguity, including missed keys

Swype (http://www.swype.com), also acquired by Nuance (http://www.nuance.com)

Not eyes-free

P. Kristensson and S. Zhai, UIST 2004
Small Devices: Finger Input
Soft Keyboards: Bimanual Strokes

- Bimanual gesture keyboard
 - Each hand strokes through letters on its half of the keyboard
- How to terminate a word?
 - Finger-release. Lifting both fingers off the screen ends the word
 - Space-required. Space key ends the word
- Users preferred finger-release
- Both approaches theoretically more efficient than unimanual stroke keyboards, but
 - Unimanual faster!
 - Bimanual required more mental effort
 - Bimanual more comfortable, less physically demanding

Not eyes-free

Small Devices: Pen Input
New Layouts, Strokes

- QWERTY
 - Conventional
 - ~ 30 wpm
- Metropolis
 - Optimized using Fitts’s Law, based on digram pairs, using random walk, simulated annealing
 - ~ 43 wpm
Small Devices: Pen Input Strokes, Bezel Constraints

- Edgewrite
 - Unistroke: One stroke per character
 - Enter characters by traversing edges and diagonals of a square hole in plastic template
 - Only sequence of corners traversed matters
 - Square hole enforces (easy-to-make) cardinal-direction gestures

Eyes-free and bump-resistant
- Use of strokes along template border makes it easy for users who are disabled or in motion