Interaction Device Categorization
Coordination of DOF

- **Separable vs. integral**
- **Example (from W. Buxton)**
 - **Etch A Sketch**
 - 2 *separable* positional DOF
 - separate control knobs
 - Good for vertical/horizontal lines
 - **Skedoodle**
 - 2 *integral* positional DOF
 - integrated control joystick
 - Good for free-form doodles
 - Templates provide constrained control
Interaction Device Categorization
Transfer Function

- Mapping of properties sensed to system action
 - Qualitative
 - Position (aka position control, zero-order control)
 - Isotonic devices better than isometric/elastic devices for position control
 - Position \rightarrow position
 - Force \rightarrow position
 - Velocity (aka rate control, first-order control)
 - Isometric/elastic devices better than isotonic devices for rate control
 - Force \rightarrow velocity
 - Position \rightarrow velocity
 - ...
 - Quantitative
 - Linear...
 - Nonlinear...
 - Variable...
 - ...

Stimulus–Response (S–R) Compatibility

- Whether mapping of user stimulus (e.g., limb motion) to system response (e.g., cursor motion) is compatible with regard to
 - Direction
 - Orientation
 - ...
 - ...
Control-to-Display (C/D) Ratio
[more generally, Control-to-Response (C/R) Ratio]

- Ratio of movement of input device (user stimulus) to movement of controlled display object (system response) for multiplicative transfer function

Alternatively, $CD\ gain = (C/D\ ratio)^{-1}$

- High C/D ratio \rightarrow accuracy
- Low C/D ratio \rightarrow speed, space savings

Control-to-Display (C/D) Ratio
[more generally, Control-to-Response (C/R) Ratio]

- Variable C/D ratio
 - E.g., typical mouse transfer function
 - high-speed \rightarrow low C/D ratio
 - low-speed \rightarrow high C/D ratio

G. Casiez and N. Roussel, UIST 2011
http://libpointing.org/user-guide/why/

Note: Graph shows CD gain, not C/D ratio
An Early GUI Framework: Interaction Tasks J. Foley et al., 80s

- Basic interaction task is the input by user of atomic “unit” of info
 - Text
 - Select
 - Position
 - Quantify
 - Orient
 - Path

- Basic interaction task is accomplished by
 - basic interaction technique
 - Approach for performing basic interaction task
 - using logical device
 - Abstraction of a device based only on its output
 - String, choice, pick, locator, valuator, stroke
 - implemented by physical device(s)
 - Actual device with characteristic properties
 - Keyboard, mouse, rotary control, linear slider, joystick, touch screen, scroll wheel, buttons,…
An Early GUI Framework: Interaction Tasks J. Foley et al., 80s

- Composite interaction task combines basic interaction tasks
 - Dialogue boxes
 - Specify multiple units of information
 - Construction
 - Create objects
 - Manipulation
 - Modify objects (e.g., by scaling)

An Early GUI Framework: Interaction Tasks J. Foley et al., 80s

- Problem: The notion of a “basic interaction task” accomplished by a single logical device is an oversimplification
- Best suited to “classical” devices processed by simple computation
- What about
 - Multi-touch?
 - Gesture?
 - Full-body?
 - Face?
 - Eyes?
 - Pulse?
 - Fingerprint?
 - Emotion?
Simple Gesture Recognition

1 Unistroke Recognizer

For each T (template) and each C (candidate to match)
- Resample point path to N equidistant points
- Rotate "indicative angle" (vector from centroid to first point) to 0°
- Scale to reference square and translate centroid to origin

For each C (additional steps)
- Refine rotation to compute (heuristic) minimum distance between corresponding points of C and each T (GSS = Golden Section Search)
- Select T with smallest distance (best match)

Keyboard: QWERTY

- First used on typewriter by C. Sholes, C. Glidden, and S. Soulé, early 1870s
- Depicted in US Patent 207,559, filed 1875

Note: No shift key. This early machine typed capitals only.
Keyboard: QWERTY

- Designed to prevent jamming of keys struck in sequence
- Based on digraph frequency analysis

Keyboard: DSK (Dvorak Simplified Keyboard)

- Developed by A(ugust) Dvorak, based on time-motion studies, n-graph frequency analyses
 - Increase time fingers spend on “home keys”
 - Increase alternation between hands, fingers
- US Patent 2,040,248, filed 1932
- Vehement opinions for/against (e.g., http://www.dvorak-keyboard.com/, http://www.utdallas.edu/~liebowit/keys1.html)
- But, is it faster?
Keyboard: DSK (Dvorak Simplified Keyboard)

- Checkered history of comparison studies with QWERTY
 - 1943 US Navy studies “show” DSK faster
 - 1956 US General Services Admin study (Strong) “shows” QWERTY “brushup” practice more effective
 - Original data destroyed, possible experimenter bias
- Theoretical comparisons suggest 2.3–17% improvement
 - Studies of simulated typing based on digraph speed
- Anecdotal practical comparisons claim improvement
- Try it yourself

Keyboard: Half-QWERTY

- E. Matias, I.S. MacKenzie, and W. Buxton, INTERCHI 1993
- Builds on
 - User’s knowledge of QWERTY
 - L-R symmetry

Try the demo: http://www.matias.ca/halfkeyboard/demo
Keyboard: Half-QWERTY

- Keys of one hand remain the same
- Spacebar acts as shift to mirror image keys
- Press-release of spacebar with no other char
 - before timeout is a space
 - after timeout is a no-op
- Modifier keys (e.g., shift, ctrl) work as “sticky keys”
 - Press once to modify next key only
 - Press twice to lock and press again to release