Keyboard: Hardware Device Issues

- Keyboard design
- Keyboard layout
 - CR, BSP, DEL, CTRL, FN
 - Cursor keys
 - Number pad (123 on top vs. bottom)
 - QWERTY, DSK,...
- Key size/shape
 - Flat vs. contoured top
- Key type
 - E.g., membrane
- Scale
Keyboard: Hardware Device Issues

- Keyboard design
- Keyboard layout
 - CR, BSP, DEL, CTRL, FN
 - Cursor keys
 - Number pad (123 on top vs. bottom)
 - QWERTY, DSK, ...
- Key size/shape
 - Flat vs. contoured top
- Key type
 - E.g., membrane
- Scale

Locator

- Specifies a location
- Can be used to select, position, orient, specify path, quantify, enter text
Locator: Hardware Device Issues

- Grip
 - Stylus vs. mouse
- Time to pick up
- Active vs. passive stylus
- Mouse tracking technology
- Case study: Mouse design
 - Shape
 - Buttons
 - ...

Case Study: Mouse Design
Case Study: Hacking a new device

Soap

- Wireless optical mouse internals repackaged in lozenge-shaped plastic “core” and surrounded by cloth “hull”
- Manipulation approaches
 - “Joystick”
 - Similar to handheld spring-loaded joysticks and “upside-down optical mouse”-like devices
 - “Belt”
 - Drag hull with core stationary
 - “Soap”
 - Flip core with hull stationary

Three-State Model

- Mouse
 - Two states: tracking (button up), dragging (button down)
 - State names are just examples

- Touch Tablet/Pad (separate from display)
 - Two states: out of range (not touching), tracking (touching)
 - State 0 is used to designate a state the system cannot sense
 - State 1–State 0 transition = “pen has left the paper”
 - Does this generate an explicit event?

Note: Actual devices shown in photos may have a superset of the states listed here

Three-State Model

- Stylus with Tip Switch
 - Three states: *out of range* (not touching), *tracking* (touching, with switch open), *dragging* (touching, with switch closed)

Multi-button Mouse
- Three states: *tracking* (buttons up), *dragging a* (button a down), *dragging b* (button b down)
 - Could use double clicking on a one-button mouse to distinguish among states 2a/b
 - Could also have state 2ab (both buttons down)

Note: State names (*tracking*, *dragging*) are just examples. E.g., state 2 could instead be drawing, interacting with a menu,...

Note: *Tracking* is sometimes known as *hovering* (esp. when the device doesn’t change position for some set amount of time)

- How to support selection in 0–1 state device?
 - Use state 1–state 0 transition (liftoff)
 - Use double tap/click
 - Use timeout cue (point at object for time \(t \geq t_{\text{select}} \))
 - Use pressure threshold (if device can detect >1 level of pressure)
 - Use number of fingers or area of touch (if device can detect)

- Use other hand on other device (e.g., to push a button)
- Add a button to device

- Direct input devices (e.g., touch screen)
 - Out of range state 0 actually supports passive tracking since unsensed pointing device/finger can act as its own cursor
 - Not state 1, since system cannot sense it

- In contrast, compare with the [indirect] touch tablet/pad (in which finger on tablet/pad cannot be viewed in context of screen in state 0)
 - Same gesture, different context

- **Mouse**
- **Legacy AM/FM radio**

Fitts’s Law P. Fitts, 1954

- Predictive model of time MT to move a distance A to target of width W.
 - MT increases with increasing A, decreases with increasing W
 - Farther/smaller target \rightarrow longer time to reach
 Closer/bigger target \rightarrow shorter time to reach
 - $MT = C_1 + C_2 \ ID$
 - ID = Index of Difficulty (function of A and W)
 - C_1 = Device/appendage-dependent constant
 - C_2 = Device/appendage-dependent constant
Fitts’s Law P. Fitts, 1954

- Original task used electrical contacts
- Parameters varied from $A = 1''$, $W = 1''$ to $A = 16''$, $W = .25''$
- $ID = \log_2 (2A / W)$
 - Conventionally measured in bits, after Shannon
- $ID = \log_2 (A / W + 1)$
 - Later formulation has slightly better fit, and assures positive ID (Mackenzie)

In original reciprocal tapping task, participant alternated between tapping two bars

MT = $C_1 + C_2 \, ID$

- where ID measured in bits
- C_2 measured in secs/bit, ca. .1 sec/bit (range ca. 83 msec/bit – 430 msec/bit)
 - E.g., higher for button-down dragging
- IP (Index of Performance) = $1 / C_2$
 - Measured in bits/sec (ca. 12 – 2.3 bits/sec)
 - Also known as throughput or bandwidth
- $MT = C_1 + ID / IP$
Fitts’s Law P. Fitts, 1954

- \(MT = C_1 + C_2 \log_2 (A / W + 1) \)
- \(MT = \ldots + C_2 \ ID \)
 - \(C_2 = \) slope
 - Higher \(C_2 \) means steeper curve, corresponding to lower IP (1/C_2)
- \(MT = C_1 + C_2 \ ID \)
 - \(C_1 = \) accounts for intercept offset from 0

\[\text{MT (secs)} \quad \text{ID (bits)} \]

Hard

Easy