COMS W4170
Menus

Steven Feiner
Department of Computer Science
Columbia University
New York, NY 10027

October 13, 2015

Menu

- Set of displayed choices from which a user can select
 - Minimizes
 - Training
 - Memorization
 - Syntax errors
 - Good for novices, infrequent users
 - Some overlap with command languages if selection done by keyboard, but no syntax to remember
 - Is it a menu if list of choices is…
 - Post-it'ed on display?
 - Printed on kbd?
 - Displayed on computer, but not complete?

An early example of a menu created by labeling function keys
Types of Matching

- Exact / identity
- Class inclusion / categorical
- Equivalence / fuzzy

Exact Matching

- Alphabetic order > random order
 - Roughly twice as fast on small to medium-size menus
 - Best to be at top of alphabetic list
Exact Matching

- **Card 1982**
 - Presented participants with menu of 18 cmds, in three arrangements; needed to mouse select a specific target; average time after 43 trials:

	Alpha	Random	Categorical
Time	.81 sec	3.23 secs	1.28 secs

 - After > 800 trials, search time is faster, but no significant difference for all conditions; participants have learned exact cmd location

Exact Matching

- But, will user really know the target?
 - Months, days, states will work, but,…
 - Postal state abbreviations?
 - Editing commands?
 - Conventional names help!
 - Domain-specific commands?
Choosing a Menu Organization

Exact Targets
- Conventional Order?
 - Short List?
 - Distinctive Categories?
 - Well-Known Categories?
 - Conventional order
 - Alphabetical order
 - Categorical order
 - Conventional order
 - Alphabetical order
 - Alphabetical order
 - Neither
 - Conventional order
 - Alphabetical order
 - Categorical order
 - Conventional order
 - Alphabetical order
 - Alphabetical order

Fuzzy Targets
- Conventional Order?
 - Short List?
 - Equally Likely?
 - Conventional order
 - Alphabetical order
 - Categorical order
 - Conventional order
 - Alphabetical order
 - Categorical order
 - Frequency order

Menu Graph Structure
- Single menu
- Temporal vs. spatial set of choices
 - Linear sequential (temporal)
 - User given one choice at a time in order,… but designer should
 - Let user navigate forward/backward
 - Display previous choices
 - Let user know how much is left/has been done
 - Simultaneous (spatial)
 - User determines order, can better understand interactions among choices,… but designer should
 - Allocate more space
 - Modify remaining choices based on previous ones (e.g., disable choices that no longer apply)
Menu Graph Structure

- Tree
- Directed Acyclic Graph
 - Often occurs through reuse of “submenus” in different branches
- Directed Graph
 - E.g., WWW
 - Potential for confusion, ∞ loops!
 - Maintain history
 - Provide ability to return (“back” button/menu)
 - Show location

Menu Tree Breadth vs. Depth

T. Landauer & D. Nachbar 85

- Task: Search huge ordered tree of either ints (internal nodes are numerically ordered ranges) or words (internal nodes are alphabetically ordered ranges)
- 4096 leaf items
- Varied depth/breadth: 2–16 items/level arranged 2×12 through 16×3
- Measured selection times: 23.4–12.5 secs: Breadth faster than depth!
- \(T = c + k \log_2 b \), where
 - \(T \) is time for selection within a level
 - \(c \) and \(k \) are constants (\(k \) decreases with practice)
 - \(b \) is breadth at that level
- \(D = \log_b N \), where
 - \(D \) is depth
 - \(N \) is total number of leaf items
- Therefore, total time = \(DT = \log_b N (c + k \log_2 b) = c (\log_b N) + k (\log_2 N) \)
 - Breadth faster than depth!
 - Choices are progressively slower up to penultimate level (harder category match)
 - Choice at last level is relatively fast (exact match)

Hick-Hyman Law: Time to choose among \(b \) equally probable choices is proportional to \(\log_2 b \)

Note: Assuming no need for exhaustive scan!

Sometimes expressed in terms of \((b + 1) \) to account for additional option of not making a choice

\[\log_a b \log_b c = \log_a c \]
Menu Tree Breadth vs. Depth

- Breadth faster than depth
- Still need to avoid getting lost
 - Cascade
 - Maintains context
 - Quick return to top
 - Relatively easy to back up one level at a time
 - Dexterity issues
 - Can address with delay

Menu Design

- Group items meaningfully
 - Logically similar (cohesion)
 - Categorical organization advantages are lost with poor categorization
 - Cover all possibilities (complete)
 - No overlap (partition)
 - Users should be familiar with item meanings
- Phrasing
 - Familiar
 - Consistent
 - Distinctive
 - Concise
 - Keyword to the left
Split Menus

- Menus divided into sections (often two) with more frequent items in the top section
- Can be more efficient than conventional alphabetic menus [Sears & Shneiderman 94]
 - Short first section (e.g., ≤ 4 items)
 - Sections ordered the same way