Feedback: Senses

- Visual
- Auditory
- Tactile/Cutaneous
 - Touch
 - Pressure
 - Vibration
 - Temperature
 - Pain
- Kinesthetic
- Vestibular
- Olfactory
- Gustatory
- Nociceptive (pain receptors in skin, cornea, gut,…)

Feedback is information conveyed back to the user through one or more senses when performing a task.

Proprioceptive = Kinesthetic OR Kinesthetic + Vestibular
Feedback: Types

- **Reactive**
 - Self-generated sensory feedback
 - E.g., Proprioceptive sense of user’s movements
- **Instrumental**
 - Generated directly by interface when operated by user
 - E.g., Force feedback from control user is holding
- **Operational**
 - Generated by system as a result of user’s interaction with interface
 - E.g., Visual feedback of world moving relative to vehicle user is driving

Feedback: Consistency

- **Cross-sensory**
 - Consistency across senses
- **Spatial**
 - Stimulus-response (S-R) compatibility
 - Whether mapping of user stimulus to system response is compatible (e.g., in direction, orientation, or magnitude)
 - **Nulling**
 - Whether returning device to initial position/orientation → returning controlled objects to initial position/orientation
Feedback: Consistency

- Temporal
 - Latency
 - External sensory feedback vs. internal sensory feedback
 - E.g., visual vs. proprioceptive
 - Virtual sensory feedback vs. real sensory feedback
 - E.g., synthesized visual vs. real visual
 - Mean vs. variance

Feedback: Sensory Substitution

- Useful when some feedback channel is not available
 - Replace tactile feedback with visual or auditory feedback
 - Replace pressure with vibration
 - “Virtual synesthesia”
Passive Haptic Feedback

- Take advantage of shape/position/feel of real objects co-located with virtual ones (AKA static haptics)
 - Physical floor coplanar with virtual ground
 - Physical tabletop coplanar with virtual tabletop

Passive haptic feedback can feel “right” especially when combined with visual/audio feedback

Passive Haptic Feedback

- Passive interface props
 - User interacts with physical correlates to virtual visual objects
 - Example: Tracked ball (or doll's head) and tracked plastic strip can control models of brain and cutting plane in neurosurgical planning
 - Simplified props avoid false expectations about details
 - You can create these using Vuforia
 - polygons, polyhedra, cylinders

Feiner, COMS W4172, Spring 2014
Passive Haptic Feedback

- Passive interface props
 - User interacts with physical correlates to virtual visual objects
 - Example: Styrofoam blocks serve as both projection surfaces and physical obstacles in virtual environment

K.-L. Low, G. Welch, A. Lastra, and H. Fuchs, 2001

Passive Haptic Feedback

- Opportunistic controls
 - User interface is harvested from existing objects in task domain with appropriate shape, feel, response
 - Each opportunistic control combines
 - Portion of real world
 - 3D widget
 - One or more gestures
 - Simple vision-based tracking

S. Henderson and S. Feiner, VRST 2008, TVCG 2010
Tangible User Interfaces (TUI)

- “Employ physical objects, surfaces, and spaces as tangible embodiments of digital information.” — H. Ishii
- Use tracked physical blocks (“phicons”) to represent buildings, tools
 - B. Ullmer and H. Ishii, metaDesk, UIST 97
- Tracked objects control projected graphics
 - J. Underkoffler and H. Ishii, Luminous Room, SIGGRAPH 99

Tangible User Interfaces
Example: Illuminating Clay

- B. Piper, C. Ratti, Y. Wang, B. Zhu, S. Getzoyan, & H. Ishii, CHI 2002
- Allow users to interact with real freeform surfaces
- Users
 - Molds surface of clay (or sand)
- System
 - Determines height of surface
 - Projects imagery corresponding to task domain
Simplification

- Map a potentially complex interaction to a simpler, but more useful, one
 - Often using a more sophisticated sounding metaphor

Constraints

- Relations between variables that are automatically maintained/satisfied by the system
 - Example: Geometric constraints
 - Distance between points
 - Angle between lines
 - Ratio of line lengths, angles

Sutherland’s constraints operate on vertices. In the example on the right, the two shorter lines are constrained to be parallel and equal in length.
Constraints

- Physically realistic
 - Gravity
 - Collision detection/avoidance
- Nonrealistic
 - Turn off gravity/inertia in CAD modeler
 - Slow down time to explore simulation
- Reduce DOFs for user input
- One-way vs. multi-way

Multi-way constraints are much trickier to implement, can be harder to understand, and can be less efficient

Intelligent Constraints

- Impose constraints based on
 - object semantics
 - class
 - front vs. back
 - geometric relationships
 - visibility
 - user interaction

- E.g.,
 - if A is on top of B, then
 - if B is moved, move A
 - If A is moved, don’t move B

Intelligent Constraints

- R. Bukowski and C. Sequin, "Object Associations," *SI3D 95*
 - Relocation procedure moves selected object along relocation manifold offset from horizontal or vertical surface
 - Association procedure (triggered by visibility/contact changes) finds associated objects and modifies position/orientation of selected object and cursor (e.g., pseudo-gravity, on-wall)

1. Selected cup is dragged under a table according to relocation procedure.
2. Visibility information determines when cup "rises" to the tabletop.
3. Association procedure modifies object position and mouse cursor position.

Intelligent Constraints

- R. Bukowski and C. Sequin, "Object Associations," *SI3D 95*
 - Relocation procedure moves selected object along relocation manifold offset from horizontal or vertical surface
 - Association procedure (triggered by visibility/contact changes) finds associated objects and modifies position/orientation of selected object and cursor (e.g., pseudo-gravity, on-wall)

1. Selected cup is dragged off table's supporting surface.
2. Cup "falls" onto lower surface.
Intelligent Constraints

- Objects arranged in hierarchy based on one-way constraints
 - Transforming a parent transforms its descendants

- Objects can have
 - Binding areas: Specify where this object can bind to other objects
 - Offer areas: Specify where other objects can bind to this object

- Binding/offer areas
 - Each defined by polygon and orientation vector
 - Can be independent from object geometry
Intelligent Constraints

- When moving *unconstrained* object A
 - Pick closest offer area on other objects to binding area of A within limited range
 - Move/orient A to enforce constraint iff binding area can fit within offer area
 - Make object A a child of object B to whose offer area object A was bound
- When moving *constrained* object A
 - *Preserve* constraint if binding area of A remains in offer area of B
 - *Break* constraint if binding area of A pulled away from offer area of B
 - Remove object A from children of object B whose offer area object A left
Intelligent Constraints

Dual constraints
- Support limited two-way constraints for nonhierarchical groups (e.g., siblings)
- Specified by geometry (point, line, or polygon) and *normal vector* (pointing away from object)

Intelligent Constraints

Dual constraints
- Build group: When object A is moved, if one of its dual constraints is sufficiently close to an appropriately shaped dual constraint of another object B
 - A and B are *snapped* together such that geometries of the dual constraints are coincident and normal vectors are opposite
Intelligent Constraints

Dual constraints

- **Build group:** When object A is moved, if one of its dual constraints is sufficiently close to an appropriately shaped dual constraint of another object B
 - A and B are snapped together such that geometries of the dual constraints are coincident and normal vectors are opposite
- **Maintain group:** When object A is moved
 - All grouped objects in contact in direction of motion are moved with A
- **Break group:** When object A is moved
 - All grouped objects not in contact in direction of motion do not move, are broken off from A, and form new group(s)

Dual constraint graph

- Specifies direction of connectivity of grouped objects based on normal vectors
- Supports intuitive splitting of dual groups by generalizing "objects in contact in direction of motion"
- When selected object A is moved, of those objects currently grouped with A,
 - The only objects that move with A and remain grouped with A are those connected to A in a direction within $90^\circ + \text{tolerance}$ (e.g., 10°) of movement direction, and those that recursively meet that requirement
 - Remaining objects are broken off from A and form new fully connected group(s)
Intelligent Constraints

http://www.cse.yorku.ca/~wolfgang/videos/mive_duals.mpg