COMS W4172

Introduction

Steven Feiner
Department of Computer Science
Columbia University
New York, NY 10027

www.cs.columbia.edu/graphics/courses/csw4172

January 18, 2018

Goal

- Learn how to design, develop, and evaluate effective 3D user interfaces
 - Emphasis on Augmented Reality (AR)
What is Augmented Reality?

- Augmenting the real world with computer-generated virtual content (addressing any sense)
 1. Combine real and virtual
 - Much work addresses only visual AR
 2. Interactive in real time
 3. Registered in 3D

Note: The three criteria are part of a definition used by most researchers, first articulated by R. Azuma [Presence, 1997]

- Unlike virtual reality (VR)
 - Supplement rather than replace real world
 - Design virtual world to complement real world

Combining Real and Virtual

- Variations
 - Diminished reality
 - Remove real objects
 - Mediated reality
 - Modify real objects

S. Mann and J. Fung, ISMR 2001

http://civialab.epfl.ch/~lepetit/movies/lepetit_ismr01.mpg
Why Now?

- Commodity devices are finally sufficiently
 - Powerful
 - Small
 - Inexpensive

- Columbia Mobile Augmented Reality System, 1996 –
- Wikitude AR, Layar, Nearest Tube, Aurasma, City Lens..., 2008 –

Why Now?

- Commodity eyewear has started to appear
 - Epson Moverio BT-300
 - Meta 2 dev kit
 - Vuzix Blade
 - Microsoft HoloLens
 - Oculus Rift (opaque VR display)
Why Now?

http://google.com/trends

Approach

- Lectures
- Design, development, and evaluation assignments
 - Unity 2017.3
 - Game development environment
 - PTC Vuforia 7
 - Camera-based 3D position and orientation tracking
 - \(\geq \) Windows 7+ or OS X 10.12+ for development
 - \(\geq \) Android OS 4.4+ or
 - \(\geq \) iOS 9+
 - for deployment
Approach

- Team final projects
 - Interacting with a 16th century “maker’s manual”

The Making and Knowing Project

Intersections of Craft Making and Scientific Knowing

http://www.makingandknowing.org

Approach

- Team final projects
 - Topics and teams proposed by you
Professor

- Steve Feiner (feiner@cs.columbia.edu)
 - Director, Computer Graphics and User Interfaces Lab
 - HCI
 - 3D UIs
 - Augmented reality
 - Virtual reality
 - Wearable/mobile computing
 - Hybrid UIs (combining different technologies)
 - Knowledge-based design of graphics/multimedia
 - Games
 - Information visualization
- Office hours: Mon/Wed 1–2pm
 - Schapiro CEPSR 609, 212 939 7083
 - But, most often in Schapiro CEPSR 6LE3, 212 939 7101

IAs

- Jen-Shuo Liu (jl5004@columbia.edu)
 - PhD student in Computer Graphics and User Interfaces Lab
 - Office hours: Wed 3:30pm–5:30pm
 - Schapiro CEPSR 6LE3
- Sam Siu (ss4313@columbia.edu)
 - Senior in CS
 - Office hours: Tue 10am–noon
 - Schapiro CEPSR 6LE3
Prereqs

- COMS W4160 (Computer Graphics) or equivalent

 or

 COMS W4170 (User Interface Design) or equivalent

 or

 Ask me!

- Math?

 ▪ Covered in class

Textbooks

- For this week through 1/23:

 LaViola et al. Chaps 1–2

 Schmalstieg & Höllerer Chap 1
Grading

- Individual Assignments 60%
 - “Hello interactive 3D world” 10%
 - UI Evaluation 10%
 - Interaction techniques 25%
 - Written 3DUI analysis 15%

- Team project 40%

Lateness Policy

- All assignments due at 1:10pm on scheduled due date
- Four “late days” allowed during semester for which lateness is not penalized
 - None can be used for final project
 - Only one can be used for first assignment
 - Anything turned in past 1:10pm until midnight the next day is one day late
 - Every (partial) day thereafter that an assignment is late (including weekends and holidays) counts as an additional late day
 - Absolutely no late work accepted beyond that accounted for by late days
- If not done on time, turn in whatever you have completed on time to receive partial credit
Academic Honesty Policy

- Department of Computer Science Policies and Procedures Regarding Academic Honesty
 - www.cs.columbia.edu/education/honesty
- All use of GitHub or similar collaborative code dev sites must be done using private repos, open only to appropriate parties
- Videos of your assignments must also be private
- Infractions will be referred to the CUCS Academic Committee and the Deans

Syllabus

- Intro and history
- Design principles (reality, metaphor, magic)
- Case studies
- 3D math
- Development tools
- 3D perception, displays, and devices
- Selection
- Manipulation
- Travel
- Wayfinding
- Control: menus ↔ multimodal
- Symbolic input
- Design issues
 - Two-handed, whole-body, immersion, presence
- Evaluation
- Augmented reality
- Tangible user interfaces
- Future directions
- Guest lectures
Early History

- Flight simulators
 - Mechanical
 - Link Trainer, 1930s
 - Analog video
 - Full-motion cameras “flown” over 3D terrain models/photos
 - Digital
 - NASA space program, 1960s

Sensorama (Mort Heilig, 1962)
- Stereo film
- Audio
- Olfactory
- Haptics

M. Heilig, Designed 1957
www.mortonheilig.com

See an interview and demo:
http://www.youtube.com/watch?v=vSINEBZNCxw
Early History

- Timothy Johnson, Sketchpad III (1963)
 - Built using Ivan Sutherland’s 2D Sketchpad
 - 3D CAD with 2D interaction devices
 - 3D interaction device
 - Tracks 3D position of tip
 - Ultrasonic