See-Through Head-Worn Displays

- Helmet-mount
 - Rockwell Collins
 - Myovision

- Clip-on
 - MicroOptics
 - Lumus

- Built-in
 - MicroOptics
 - Momensa Machta
 - Lumus
What's Different?

- Google Glass prototype, 2012
- MicroOptical Corp. clip-on, late 20th C.
- IBM Visionpad, late 20th C.

See-Through Head-Worn Displays++

- Integrate ≥ 1 of
 - Orientation tracker
 - Input device
 - Audio
 - Haptics
 - RGB camera
 - Depth camera
 - Radio
 - Computer
Head-Worn Projective Displays

- Head-worn projector image
 - reflected from beam splitter…
 - on to retroreflective screen…
 - reflected back along angle of incidence to viewer

- Image is too dim to see well on non-retroreflective surface
- “X-ray vision”
- Camouflage

- Minolta “forgettable display”
 - H. Hua, A. Girardot, C. Gao, & J. Rolland, 2000

- Retroreflective surfaces
 - L. Brown, H. Hua, & C. Gao, UIST 2003

- Head-Worn Projective Displays
 - M. Inami, D. Sekiguchi, S. Tachi, 2003

- The Secret of Transparency
 - M. Inami, D. Sekiguchi, S. Tachi, 2003

Feiner, COMS W4172, Spring 2018
Head-Worn Projective Displays

- castAR (Technical Illusions) 2013–2017 RIP

See also D. Krum, E. Suma, & M. Boles, Augmented reality using personal projection and retroreflection, Personal and Ubiquitous Computing, Jan 2012, 16(1)

What Needs to Improve?

- Besides aesthetics and comfort,…
Wide Field of View for AR
K. Kiyokawa (Osaka U.), ISMAR 2007

- Head-worn projective display uses hyperbolic beam splitter
- 146° (in theory) horizontal FOV

Wide Field of View for VR

- Predistort image to counteract nonlinear lens distortion
 - Done in GPU
 - Typically not done in 20th C. systems because of computational overhead

See also http://doc-ok.org/?p=1414
Controllable Focus
H. Hua (U Arizona), ISMAR 2008

- Computer-controlled liquid lens
 - Can continuously vary focus or switch between discrete focal planes
- Example: Two discrete focal planes
 - Period limited by speed of lens

Interaction of Real and Virtual
K. Kiyokawa (Osaka U.)

- CRL (Communications Research Lab) per-pixel occlusive optical see-through display
 - K. Kiyokawa et al., ISMAR 2003

A depth camera is used to determine z values for the user's hand
Interaction of Real and Virtual

Trivisio

- AlphaBino per-pixel occlusive optical see-through display

Platform-Mounted Displays

- Fakespace Boom
 - High-resolution (opaque) stereo display
 - Mounted on a counterbalanced arm
 - Serves as a mechanical tracker
 - Makes it easy to manipulate massive display

- Virtual “telescopes”
 - Typically 1DOF (azimuth) or 2DOF (+ elevation)
 - Mechanically tracked video-see-through
Spatial Augmented Reality (SAR)

- Projectors in the environment project onto real world objects whose shape and texture we want to see
 - Augment the real world directly
 - Can avoid encumbering the user