Pointing: Image-Plane

- Like hand-eye ray casting, but
 - All interaction occurs in 2D on the projection plane
 - After selection, to support manipulation, object can be scaled/moved to
 - pick point, maintaining approximate projected size, or
 - canonical size/location,…

- “Sticky finger”
 - Object under finger is selected

- “Head crusher”
 - Object framed by tracked fingers is selected

Note: Need to designate a specific dominant eye in stereo, as with all single eye-defined pointing
Pointing: Image-Plane

- Like hand-eye ray casting, but
 - All interaction occurs in 2D on the projection plane
 - After selection, to support manipulation, object can be scaled/moved to
 - pick point, maintaining approximate projected size, or
 - canonical size/location,…
- “Lifting palm”
 - Object on palm is selected
- “Framing hands”
 - Object framed by hands is selected

Note: Need to designate a specific dominant eye in stereo, as with all single eye-defined pointing

Virtual Hand

- User controls 3D “cursor” (e.g., virtual hand model) intersected with objects
- Position/orientation of body part/device are mapped to virtual hand
 - Note: Many versions of the “virtual hand” are really “virtual 3DOF/6DOF mice” (i.e., map to a single point, not a set of dexterous fingers)
- User can confirm desired object by issuing trigger event
 - E.g., voice, button, gesture,…
- Object is attached to hand for manipulation until released with additional trigger event
Virtual Hand: Basic Version

- User's hand/device position/orientation are mapped directly to virtual hand's position/orientation with linear scale

\[p_v = \alpha p, \quad R_v = R, \quad \alpha = 1 \] in AR (typically),

where \(\alpha \) scales real to virtual world,

- \(p_v \) and \(R_v \) are virtual hand pos/ori,
- \(p \) and \(R \) are real hand/device pos/ori

Virtual Hand: Origins

- M. Krueger, Videoplace, 1970s

 2D projections of real 3D hands are used to interact with 2D objects. Real-time processing of thresholded video of user makes it possible to determine interesting properties useful for interaction

- L. Roberts, The Lincoln Wand, 1966

 Ultrasonic tracking of 3D wand tip position
Virtual Hand: Limitations

- Isomorphic
 - Intuitive, but,…
 - Can only select objects within arm’s reach
 - Must travel to select objects farther away

Virtual Hand: Go-Go

- “Classic” nonisomorphic technique
- User’s hand stretches when extended past a limit
 - Mapping function determines C-D (control–display) ratio
 - Cube represents real hand
- Typically less effective than pointing for selection, but allows uniform approach to selection and manipulation

The Go-Go Interaction Technique: … to reach farther in virtual environments

Feiner, COMS W4172, Spring 2014
Virtual Hand: Go-Go

- Determining length of virtual arm, r_v

\[r_v = F(r_r) = \begin{cases}
 r_r & \text{if } r_r \leq D \\
 r_r + \alpha (r_r - D)^2 & \text{otherwise}
\end{cases} \]

where r_r is length of r_r (vector from user to real hand), real hand is at spherical coordinates (r, ϕ, θ), r_v is length of virtual arm, F is nonlinear mapping function, D and α are constants.

Virtual Hand: Go-Go

- Variations (Bowman & Hodges, 1997)
 - Stretch go-go
 - Distance partitioned in 3 zones. Hand
 - stretches at constant rate in far zone
 - doesn’t change in middle zone
 - retracts at constant rate in near zone
 - Indirect go-go
 - Buttons make hand stretch/retract

Gauge at right indicates zones: stretch (green), stable (violet), and retract (blue)
Virtual Hand: Silk Cursor

- An approach to precise containment selection
 - Emphasizing feedback
- “Hand” is 3D box cursor with low opacity (“silk”) faces
- Moving cursor changes number of faces through which target is seen
 - This visual cue makes it easier to position box to contain target fully

Selection Aids

World in Miniature (WIM)

- User manipulates small-scale copy of virtual world
 - Typically viewed exocentrically
 - Can also be used for travel
 - Updates are synchronized between world and WIM
 - Larger worlds can use selective display of WIM subset, with scaling and scrolling

- Need to avoid occlusion by walls
 - Hack: Model only interior wall surfaces for room and use backface culling to suppress when seen from outside
Combining Selection Techniques

- When one technique is insufficient, combine techniques
 - Choice
 - User chooses among alternative techniques
 - E.g., through menu, different selection gestures,…
 - Integration
 - System switches among techniques automatically based on task
 - E.g., switch between selection and manipulation, based on selection and release triggers

Integrated: HOMER (Hand-centered Object Manipulation Extending Ray-casting)

- Selection with pointing (ray-casting) switches to
- Manipulation with virtual hand automatically moved and attached to object
 \[r_v = \alpha_o r_r, \quad \alpha_h = \frac{D_o}{D_n}, \]

 where \(\alpha_h \) is a scaling factor defined at time of selection, \(D_o \) is distance to object, \(D_n = r_r \) at time of selection
- Hand returns when object is dropped
- Distance at which object can be placed depends on \(\alpha_h \)
 - Asymmetric: Easier for moving far object near, than near object far!
Integrated: HOMER *(Hand-centered Object Manipulation Extending Ray-casting)*

- Variations
 - *Indirect HOMER*
 - Buttons are used to translate virtual hand (like *indirect go-go*)

Integrated: Scaled-World Grab

- *Selection* with image-plane technique causes temporary *scaling* of entire world around viewpoint by α_s, so object can be manipulated relative to world with virtual hand
 \[
 \alpha_s = \frac{D_v}{D_o},
 \]
 where D_v is distance from virtual viewpoint to virtual hand, D_o is distance from virtual viewpoint to object at time of selection
- User *might* notice no or little change, depending on locations of other objects, use of stereo
- World rescaled when released
- Near–far asymmetry of manipulation because of scaling

Note: Object and world maintain relative spatial relationships (unlike image-plane pointing, in which only object is temporarily moved)

M. Mine, F. Brooks, & C. Sequin, 1997
Integrated: Voodoo Dolls

- Requires two 6DOF-tracked hands
- Select object with image-plane technique
 - System creates *doll* (copy) of object in hand
 - Releasing a doll destroys it
- Doll in dominant (D) hand
 - Controls object's position/orientation when both hands hold dolls

J. Pierce, B. Stearns, and R. Pausch, 1999

Integrated: Voodoo Dolls

- Doll in nondominant (ND) hand
 - Scaled to constant length (e.g., .5m) along longest dimension
 - D doll is scaled proportionally relative to ND doll
 - Acts as reference frame for doll in D hand
 - Transformation of D doll relative to ND doll is applied to D doll’s object
 - Does *not* transform its object
 - Spawns new dolls that can be selected (and manipulated) by D hand
 - Spawned dolls represent all descendants of ND doll in scene graph hierarchy, and other objects within set radius of ND doll
 - Context can also be determined using two hands as “framing hands” or by specifying the radius explicitly
 - Dolls can be transferred between hands

J. Pierce, B. Stearns, and R. Pausch, 1999
Integrated: Voodoo Dolls

- Seamless interaction at multiple scales
 - But, note problem if ND doll is scaled up, making D doll too large
- Can manipulate occluded objects
 - D hand can grab a spawned occluded doll in ND doll context
- Can move ND doll into more comfortable position for D hand interaction
- Can “freeze” (relative to user’s hands) doll of moving object by making it an ND doll
 - But, first need to grab moving object

Pierce & Pausch, 1999

Integrated: Voodoo Dolls

- Problem
 - Hard to move D doll to position away from other objects, since ND doll is created by picking an object (and D doll moves relative to ND doll)
- Extension (Pierce & Pausch 2002)
 - Selecting point on “ground” creates temporary object (represented as multi-colored cube) that can be an ND doll

Pierce & Pausch 2002