
211

Opportunistic Controls: Leveraging Natural Affordances as Tangible User
Interfaces for Augmented Reality

Steven J. Henderson

Steven Feiner

Columbia University*

Abstract
We present Opportunistic Controls, a class of user interaction
techniques for augmented reality (AR) applications that support
gesturing on, and receiving feedback from, otherwise unused
affordances already present in the domain environment. Oppor-
tunistic Controls leverage characteristics of these affordances to
provide passive haptics that ease gesture input, simplify gesture
recognition, and provide tangible feedback to the user. 3D wid-
gets are tightly coupled with affordances to provide visual feed-
back and hints about the functionality of the control. For example,
a set of buttons is mapped to existing tactile features on domain
objects. We describe examples of Opportunistic Controls that we
have designed and implemented using optical marker tracking,
combined with appearance-based gesture recognition. We present
the results of a user study in which participants performed a simu-
lated maintenance inspection of an aircraft engine using a set of
virtual buttons implemented both as Opportunistic Controls and
using simpler passive haptics. Opportunistic Controls allowed
participants to complete their tasks significantly faster and were
preferred over the baseline technique.

Categories and Subject Descriptors

H.5.2 [Information Interfaces and Presentation]: User Inter-
faces—Input devices and strategies, Interaction Styles; H.5.1
[Information Interfaces and Presentation]: Multimedia Informa-
tion Systems—Artificial, augmented, and virtual realities; I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
techniques

General Terms
Human Factors

Keywords
3D interaction, selection metaphor, tangible user interfaces, aug-
mented reality.

1 Introduction

Many current and potential augmented reality (AR) application
domains pose two sets of competing constraints. The first set of
constraints limits extraneous head, eye, and hand movements
beyond the immediate vicinity of a user’s current task. For ex-
ample, a mechanic servicing the internals of a turbine engine may
find it impractical (or impossible) to reposition their hands to
manipulate any device not currently within reach or sight. Like-
wise, head and eye movements that cause the mechanic to avert
their gaze from the repair area can break context and increase task
completion time. The second set of constraints relates to various
policies, material properties, and physical space limitations that
restrict modifications to the application’s environment. For ex-
ample, safety regulations and a confined repair space might pre-
clude the mechanic from bringing in, or installing, certain inter-
face devices (e.g., portable devices or keypads) that might other-
wise compensate for limited head, eye, and hand movement.
To support these types of AR scenarios, we have developed a
class of interaction techniques we call Opportunistic Controls,
examples of which are shown in Figure 1. An Opportunistic Con-
trol (OC) is a tangible user interface [Ishii and Ullmer 1997] that
leverages naturally occurring, tactilely interesting, and otherwise
unused affordances—properties of an object that determine how it
can be used [Gibson 1986; Norman 1988]. These affordances
serve as tactile landmarks [Blaskó and Feiner 2004] that provide
inherent passive haptic feedback [Lindeman et al. 1999] for hand
gestures and are augmented with overlaid 3D widgets to provide
visual feedback. Ideally, OCs are “harvested” from compatible
surfaces in the physical task domain of the AR application. As
we describe later, certain characteristics of the tactile landmarks
are exploited to simplify gesture recognition.

*{henderso,feiner}@cs.columbia.edu

Figure 1: Opportunistic Controls in action. (left) A user manipulates a virtual button while receiving haptic feedback from the raised
geometry of the underlying engine housing. (center) A user leverages the grooves in a wiring harness to help position a virtual slider.

(right) A user turns the collar of an antenna connector to change a virtual text box value.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial
advantage, and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee.
VRST’08, October 27-29, 2008, Bordeaux, France
Copyright 2008 ACM ISBN 978-1-59593-951-7/08/10 ...$5.00

212

An OC interface enables a user to interact with an AR application
by touching naturally occurring surfaces within an application’s
task environment. For example, the aforementioned mechanic
servicing the turbine engine might use various fasteners (e.g.,
screws and bolts) located on individually serviced components to
display documentation specific to each component. A rotating
washer or other surface on the same component can be used to
page through the documentation or select entries from a list of
observed conditions. A grooved surface in the vicinity of the
component, such as a wiring harness or door hinge, might map to
a virtual spinner used to enter diagnostic data or set various com-
ponent parameters.
This approach creates a tangible user interface with three distin-
guishing properties: (1) leveraging otherwise unused, and unasso-
ciated objects that are already in the task domain as primary user
interface components, (2) deliberately exploiting certain features
of these objects for passive haptics and hand gesture recognition,
and (3) minimizing the need for external user interface artifacts.
As we describe below, this generalizes earlier work on passive
haptics.

2 Related Work

There is much previous work on the use of haptic feedback in
user interfaces in general and 3D user interfaces in particular.
Some of this involves active haptics (e.g., [Brooks et al. 1990]),
in which active devices, typically using motors, create forces and
torques as part of the user interface. Here, we concentrate on pre-
vious work on passive haptics, in which passive elements in the
environment respond to user interaction.
Buxton and colleagues [1985] added a cardboard overlay with
cutout holes to a 2D touch tablet, creating a set of separate wid-
gets, each of which could be discriminated through tactile feed-
back, encouraging eyes-free use. Weimer and Ganapathy [1989]
positioned a set of 3D virtual buttons operated with a DataGlove
to be coplanar with a physical desktop, providing what they called
“a natural source of tactile feedback.” Later, Hinckley and col-
leagues [1994] used a ball or doll's head and a small plastic panel,
both outfitted with 6DOF trackers as “passive interface props”
with which a physician could control an interactive visualization
of a patient's head when planning neurosurgery.
Several groups have used tracked hand-held tablets with tracked
fingers or styli to provide a supportive mobile surface on which to
operate 2D widgets in AR (e.g., [Szalavari and Gervautz 1997])
or VR (e.g., [Lindeman et al. 1999]). Lindeman, Sibert, and Hahn
[1999] referred to this as “passive haptics” or “passive-haptic
feedback.” Later work by Insko and colleagues [2001] demon-
strated the advantages of passive haptics in virtual environments,
positioning styrofoam blocks to coincide with the walls of an
otherwise virtual environment. (In fact, one could argue that
essentially any immersive virtual environment in which the vir-
tual floor is coplanar with the real floor is using passive haptics.)
Research on tangible user interfaces [Ishii and Ullmer 1997] uses
a variety of physical artifacts, often tracked or recognized wire-
lessly, as physical representations of otherwise virtual data and to
physicalize otherwise virtual interaction techniques.
All of this previous work either uses simple naturally occurring
surfaces (e.g., [Weimer and Ganapathy 1989]) or introduces new
objects into the environment, whether simple (e.g., [Szalavari and
Gervautz 1997]) or more complex (e.g., [Hinckley et al. 1994]).
In contrast, we are interested in the opportunistic use of objects

that already exist in a particular task domain, and whose possibly
complex surface geometry provides affordances that lend them-
selves well to certain kinds of interactions. Thus, OCs apply Bux-
ton and colleagues’ notion of 2D haptically discriminable widgets
to generalize and extend Weimer and Ganapathy’s early example
of a set of 3D widgets laid out on a single undifferentiated exist-
ing surface, without adding additional objects to the environment.

3 Alternative User Interfaces

Prior to designing OCs, we considered some of the many alterna-
tive interaction techniques involving devices such as keyboards,
keypads, and touch screens. If these devices are not readily avail-
able within the task domain, they can be added or mobile versions
can be used. We rejected these alternatives because of the two
sets of competing constraints highlighted in Section 1. Some AR
task domains (e.g., aviation maintenance) are not amenable to the
introduction of objects that are not indigenous to the domain.
Even if mobile devices are made available, they may require a
user to momentarily shift their hands and eyes away from a spe-
cific task. Some require that the user hold them in one hand (e.g.,
a Handykey Twiddler) or momentarily engage both hands (e.g., a
wrist-worn device operated with the other hand).
In contrast, OCs use existing features of the domain environment
to provide a suitable tangible user interface. If the user’s eyes and
hands must remain in a certain area, then affordances within that
area may be able to be exploited as part of the user interface.
Finally, when the user finishes their task, nothing remains behind
that must be maintained, hidden, or removed.
It is important to address potential situations when the task do-
main lacks sufficient suitable features for our technique. For
example, a user might encounter areas that do not offer enough of
the right kind of features to satisfy a task’s required number and
type of OCs. In these cases, our technique would offer a smooth
fallback to conventional passive haptic feedback techniques by
binding one or more OCs to undifferentiated available flat surface
regions.

4 Definition

We define an OC as the six tuple),,,,,(,
where:
 represents a continuous physical region bounding the natu-

rally occurring affordance(s) serving as one or more tactile
landmarks for hand gestures. This region is specified by a 3D
physical model capturing the physical geometry used by the
OC.

 is a 3D widget satisfying the definition and design specifi-
cations provided by Conner and colleagues [1992]. Each in-
stance of consists of a virtual model representing the wid-
get’s geometry and an augmented transition network (ATN)
specifying the widget’s behavior.

 is a function mapping the encapsulated virtual geometry of
the widget () to the physical geometry of the affordance
region (). This function serves to dynamically register the
3D widget’s model at the correct location in based on the
current state of the widget’s ATN.

 = is the set of visually recognized hand ges-
tures associated with the OC. These gestures share a common
3D model space and grammar.

},..,{ 21 n

213

 represents the functional mapping from the grammar of
to the ATN of and defines how an individual widget re-

sponds to gesturing.

 is the 3D transformation required to map locations in the
model space of to the model space of . This transforma-
tion is used to detect when and where a gesture intersects with
an OC’s physical geometry.

As defined above, each OC consists of a particular contiguous
physical region paired with a particular 3D widget that together
respond to one or more gestures. This definition distills the OC to
an atomic building block that can be collectively combined to
form more complex interfaces.
It is useful to place our definition of OCs within the broader con-
text of tangible user interfaces. Using Fishkin’s taxonomy of tan-
gible user interfaces [Fishkin 2004], OCs present a nearby em-
bodiment to the user. That is, the output of applications featuring
OCs will take place near the primary input device (the OC’s
physical affordance region,). Continuing the classification,
each OC presents a fully realized metaphor to the user. Given the
definition above, the virtual component of the OC (the 3D widget,

) is paired to the physical system (the physical affordance
region,). When the user gestures on an OC, the 3D widget and
physical affordance region respond and feel as one control.

5 Prototype

We developed a hardware and software architecture for studying
OCs in an indoor laboratory setting. This architecture allowed us
to create a specific prototype implementation that we evaluated
by means of the user study described in Section 6.

5.1 Affordance Design
We experimented with three kinds of affordances in our proto-
type. The first kind includes unused objects in the environment
that tangibly resemble buttons. These objects have physical con-
tours that are easily distinguished by a user’s hand. Examples
include various fasteners (e.g., screws, bolts, and nuts), raised
geometry, small holes, dimples, or the intersection of hard edges,
as shown in Figure 2. OCs based on these types of surfaces sup-
port binary gestures in which the OC is activated when the user’s
hand intersects any part of the button. Here, passive haptic feed-
back associated with button-based OCs need only provide infor-
mation about the button’s location to prove useful (a result dem-
onstrated in the user study). However, certain types of elastic
surfaces might provide additional feedback about the state of the
button. For example, objects made of rubber or malleable plastic
could provide elastic feedback as the user presses the button.

The second kind of affordance we explored includes linear or
curved static surfaces in the environment that could support
valuator-based OCs. These include smooth edges, pipes, cords,
or natural surfaces, as shown in Figure 3. Gestures interacting
with these types of surfaces require more precise tracking of the
user’s hand and subsequent positioning of 3D widgets. More
interesting versions of these affordances are characterized by

grooves, notches, and other textures that provide discretized feed-
back to the user as they gesture along the control (e.g., in the
spirit of ridged surfaces that are specifically designed to provide
haptic feedback [Murray-Smith et al. 2008]).

The third kind of affordance we studied involves surfaces associ-
ated with moveable objects in the environment. Examples include
objects that rotate (e.g., free spinning washers, quick-release fas-
teners, and disconnected wiring connectors), objects that slide
(e.g., large poster clips on top of dry erase boards, and control
rods), and objects that bend (e.g., rubberized tubes and hoses), as
shown in Figure 4. These objects allow for richer controls whose
underlying physical geometry () moves with the 3D widget
() in response to the user’s gestures.

Throughout this exploration of the space of possible affordances,
we adopted the following initial set of guidelines governing the
selection of OCs:
 OCs should avoid desensitizing the user to a function of an

overloaded object (e.g., using switches and knobs on a con-
trol panel for functions outside their design specification).

 OCs should not endanger the user or desensitize them to
surfaces that could prove dangerous outside the context of
the OC (e.g., using the tip of a spark plug as a button).

 When applicable, affordances should not overload objects
that might become damaged through gesturing (either while
the user is manipulating the OC or when the user tries to
execute the gesture when the object is assuming its designed
purpose).

5.2 Gesture Recognition Design
Gesture recognition is performed optically with a single camera
mounted overhead with clear line of sight to all OCs in our envi-
ronment. The camera is tracked by using the ARTag optical
marker tracking library [Fiala 2005] to detect a fiducial array
within the camera’s current frame. We use a separate dedicated
camera (as opposed to the cameras supporting the user’s display)
to free the user from having to look at the OCs. This allows the
user to look in another location while gesturing and supports
eyes-free interaction.
A separate execution thread analyzes each camera frame for the
user’s gesture and is implemented in three phases—data reduc-
tion, gesture matching, and gesture parsing. In the data reduction
phase, we build on the appearance-based approach developed by
Kjeldsen and Kender [1996] to segment each frame to locate the
user’s hands. The segmentation process first defines the collec-
tive gesture model space as one sharing the camera’s 2D coordi-
nate system. In doing so, the segmentation algorithm ignores any

Figure 3: Objects that could support valuator OCs.

Figure 4: Objects that could support moveable OCs.

Figure 2: Objects that could support button OCs.

214

depth information in the scene. Despite several notable disadvan-
tages discussed in Section 5.4, this relaxation speeds gesture rec-
ognition and provides a sufficient grammar for our OCs. We next
define the physical model for each OC () as a convex polyhe-
dron that generally matches the physical contours of a particular
OC. Each polyhedron is defined by 3D points positioned in a
common physical interface coordinate system. The algorithm
then defines the transformation that enables conversion of
coordinates in gesture space (camera coordinates) to and from
physical interface coordinates.
This is an important step in the data reduction chain, and a par-
ticular advantage afforded by OCs, because it focuses the amount
of follow-on image processing required for segmentation. Be-
cause the interaction technique is only concerned with gestures
that might intersect with specific physical areas, segmentation
algorithms can restrict processing to the 2D pixel regions that
overlap with each OC’s physical model. Moreover, because we
track the position and orientation of the camera, is comput-
able in real-time by solving for the inverse model-view matrix
received from the ARTag library. The algorithm calculates a
segmentation window for each OC by using the value of to
construct a 2D bounding box encapsulating each OC’s physical
geometry (Figure 5, left). Each segmentation window is filtered
for significant values of the primary color red in the source im-
age’s 24-bit RGB color format. When complemented by a con-
trolled lighting environment, this filtering can effectively isolate a
user’s gesture from other objects in an image and supports a wide
range of skin pigmentation. The result is a binary image that
represents possible locations of the user’s skin touching (or over-
lapping) each OC’s geometry (Figure 5, right).
The algorithm then executes a connected component analysis for
each OC bounding box and assumes the largest component in
each is the user’s hand, finger, or set of fingers. A high-pass filter
is applied to the size of each maximum component to prevent
noise from triggering buttons when skin is not present. During
this step, the reduced pixel area provided by each OC’s segmenta-
tion window again helps reduce data processing by limiting the
breadth and depth of recursive connected component analysis.
During the gesture matching phase of the algorithm, the largest
connected component C in each OC is evaluated for the location
of point ph, where ph approximates the location of the user’s fin-
ger tip in the connected component. This point is determined by
selecting the leftmost point on the highest scan line of C. This
approach assumes ph is the highest leftmost point of the user’s
gesture in the camera’s coordinate system. The algorithm then
uses -1 to translate the point ph to the corresponding point th in
the physical coordinates of the OC (). The location of th is
used to match each OC’s gesture ().
Gesture parsing is accomplished with a finite state machine
(FSM) for each OC that resembles the ATN of the accompanying
3D widget (). Each state in the FSM represents a command
(e.g., “BUTTON_1_DOWN” or “SLIDER_2_UP”) in the shared
OC grammar and the ATN’s transitions are mapped to the OC
gestures . The gesture algorithm then uses the functional map-
ping of to translate the current command to the appropriate

state in the corresponding 3D widget . This final step ensures
the widget’s ATN is synchronized with the user’s gestures.

5.3 Widget Design
We experimented with several designs for 3D widgets () as
part of our prototype development. In each case, we sought to
create an appropriate 3D model that matched the particular ge-
ometry of the OC. In all cases, we found that increasing the
transparency of the widget models was helpful to allow users to
partially view the OCs underlying geometry. The transparency
also allows the user to partially view any gestures that might be
occluded by the 3D Widget. The ATNs for each widget are mod-
eled as specified by Conner and colleagues [1992]. This was a
trivial process for button-type OCs, and involved slightly more
complicated transitions for valuator and moveable OCs

5.4 Design Limitations
Our design suffers from several limitations. First, it relies on an
optical marker-based tracking scheme to compute the value of

. Therefore, markers must be added to the domain environ-
ment, contradicting our vision of OCs as not requiring modifica-
tions of or additions to the task domain. We view the use of such
markers as a temporary and minor violation of this premise, and
believe that it will be possible to build on recent advances in
markerless tracking (e.g., [Klein and Murray 2007; Bleser and
Stricker 2008]) to replace our current use of markers. Moreover,
these markers are cheaper and arguably easier to add than alterna-
tive interface devices, and minimally disturb the task environ-
ment. Second, our segmentation algorithm’s relaxation of depth
information limits the type of interactions one can perform—
specifically clutching and hovering. Finally, because each OC’s
bounding box is segmented separately, the gesture algorithm can
produce multiple gestures from multiple OCs. This was a delib-
erate design decision to support the user gesturing on more than
one OC simultaneously (i.e., for multi-touch interactions). How-
ever, this feature requires more sophisticated program logic to
reconcile potentially conflicting gestures. When coupled with our
algorithm’s lack of depth information, this feature can create
situations in which hovering and clutching movements overlap
neighboring controls and are erroneously interpreted as active
gestures. We discuss this further in the description of our user
study.

Figure 5: Unsegmented (left) and segmented (right) bound-
ing boxes for a set of OCs. Graphics are added in debugging

interface. (The user does not see this camera’s view.)

215

5.5 Prototype Implementation
We implemented our current prototype using two locally net-
worked computers, one for managing gesture recognition for the
OCs, and one for rendering OC widgets as part of a broader AR
application testing the OCs in various scenarios. The decision to
use two machines resulted in part from concerns about the re-
source load required to drive a binocular stereo video see-though
display, while also supporting hand-gesture recognition. Addi-
tionally, we are interested in the ability of our software architec-
ture to support scenarios where a single, relatively fixed server
and attached cameras could provide gesture recognition to multi-
ple users.

5.5.1 Implemented OCs
Our current implementation features five button-type OCs on a
Rolls-Royce Dart 510 turboprop aircraft engine in our lab, as
shown in Figures 6–8. Four of these OCs (Buttons A–D) map to
large smooth protrusions on the outside of the engine’s compres-
sion section and are used to select items in a virtual menu. The
fifth button OC maps to a nearby bolt, and is used as a “next”
button to navigate between menus. The menu button 3D widgets
were modeled to resemble the underlying protrusions, while the
“next” button 3D widget is a semi-transparent circle. All button
models use multiple textures to provide visual feedback when the
buttons are pressed.
We also implemented two other types of OCs. One is a valuator-
based OC that maps a slider to a grooved wiring harness on the
Dart engine (Figure 1, center). This slider is used to control a
numeric value recorded in a text box. The other is a rotating OC
that maps an antenna connector to a virtual text box (Figure 1,
right). As the user rotates the connector’s collar, the text box
changes value.

5.5.2 Gesture Recognition
The gesture-tracking algorithm runs on a dedicated Dell M1710
XPS laptop connected to a fixed Point Grey Firefly MV 640 480
resolution color camera tracked by a single ARTag fiducial array
mounted near the five button-type OCs (Figure 8). The gesture
recognition application segments the five button-type OCs and
parses gestures at a 30 fps rate.

5.5.3 Opportunistic Control Application
We implemented a central OC application that integrates all as-
pects of gesture recognition, rendering, user tracking, and AR task

management. This application executes on a PC running Win-
dows XP Professional, with a single NVIDIA Quadro 4500 graph-
ics card. We then attached a custom-built stereo video see-
through head worn display (HWD). This HWD was constructed
from a Headplay 800 600 resolution color stereo gaming HWD
with two Point Grey Firefly MV 640 480 resolution color cam-
eras mounted to the front and connected to separate IEEE 1394a
buses on the PC (Figure 8). The cameras are equipped with 5mm
micro lenses and capture at a 30 fps rate.
Tracking is provided by two systems. For the user’s head, we
used a ceiling-mounted InterSense IS900 6DOF tracker to track a
single station mounted on the HWD. Head tracking data is used
to position all virtual content, with the exception of the 3D wid-
gets that are part of the OCs. These widgets are positioned using
the same optically tracked ARTag fiducial array used by the ges-
ture recognition camera, sensed with the HWD’s left camera.
Note that the HWD cameras operate independently of the fixed
gesture recognition camera in order to facilitate eyes-free gesture
recognition.
The primary AR application software was developed as a game
engine “mod” using the Valve Source Engine Software Develop-
ment Kit. The engine’s “player” serves as a virtual proxy for the

Figure 6: Dart 510 Engine (without OCs). Figure 7: Dart 510 Engine (with five button-type OCs).

Figure 8: A user (wearing a stereo video see-through HWD)
manipulates OCs with our prototype. The fixed gesture rec-

ognition camera appears at the top of the photo.

5.5 Prototype Implementation
We implemented our current prototype using two locally net-
worked computers, one for managing gesture recognition for the
OCs, and one for rendering OC widgets as part of a broader AR
application testing the OCs in various scenarios. The decision to
use two machines resulted in part from concerns about the re-
source load required to drive a binocular stereo video see-though
display, while also supporting hand-gesture recognition. Addi-
tionally, we are interested in the ability of our software architec-
ture to support scenarios where a single, relatively fixed server
and attached cameras could provide gesture recognition to multi-
ple users.

5.5.1 Implemented OCs
Our current implementation features five button-type OCs on a
Rolls-Royce Dart 510 turboprop aircraft engine in our lab, as
shown in Figures 6–8. Four of these OCs (Buttons A–D) map to
large smooth protrusions on the outside of the engine’s compres-
sion section and are used to select items in a virtual menu. The
fifth button OC maps to a nearby bolt, and is used as a “next”
button to navigate between menus. The menu button 3D widgets
were modeled to resemble the underlying protrusions, while the
“next” button 3D widget is a semi-transparent circle. All button
models use multiple textures to provide visual feedback when the
buttons are pressed.
We also implemented two other types of OCs. One is a valuator-
based OC that maps a slider to a grooved wiring harness on the
Dart engine (Figure 1, center). This slider is used to control a
numeric value recorded in a text box. The other is a rotating OC
that maps an antenna connector to a virtual text box (Figure 1,
right). As the user rotates the connector’s collar, the text box
changes value.

5.5.2 Gesture Recognition
The gesture-tracking algorithm runs on a dedicated Dell M1710
XPS laptop connected to a fixed Point Grey Firefly MV 640 480
resolution color camera tracked by a single ARTag fiducial array
mounted near the five button-type OCs (Figure 8). The gesture
recognition application segments the five button-type OCs and
parses gestures at a 30 fps rate.

5.5.3 Opportunistic Control Application
We implemented a central OC application that integrates all as-
pects of gesture recognition, rendering, user tracking, and AR task

management. This application executes on a PC running Win-
dows XP Professional, with a single NVIDIA Quadro 4500 graph-
ics card. We then attached a custom-built stereo video see-
through head worn display (HWD). This HWD was constructed
from a Headplay 800 600 resolution color stereo gaming HWD
with two Point Grey Firefly MV 640 480 resolution color cam-
eras mounted to the front and connected to separate IEEE 1394a
buses on the PC (Figure 8). The cameras are equipped with 5mm
micro lenses and capture at a 30 fps rate.
Tracking is provided by two systems. For the user’s head, we
used a ceiling-mounted InterSense IS900 6DOF tracker to track a
single station mounted on the HWD. Head tracking data is used
to position all virtual content, with the exception of the 3D wid-
gets that are part of the OCs. These widgets are positioned using
the same optically tracked ARTag fiducial array used by the ges-
ture recognition camera, sensed with the HWD’s left camera.
Note that the HWD cameras operate independently of the fixed
gesture recognition camera in order to facilitate eyes-free gesture
recognition.
The primary AR application software was developed as a game
engine “mod” using the Valve Source Engine Software Develop-
ment Kit. The engine’s “player” serves as a virtual proxy for the

Figure 6: Dart 510 Engine (without OCs). Figure 7: Dart 510 Engine (with five button-type OCs).

Figure 8: A user (wearing a stereo video see-through HWD)
manipulates OCs with our prototype. The fixed gesture rec-

ognition camera appears at the top of the photo.

216

user and is positioned by tracking information from the IS900.
All virtual content in the AR scene is provided by custom game
engine models, GUI elements, and other components. Full resolu-
tion stereo video from the two Firefly MV cameras is stretched to
the scene’s back buffer via an external DLL that hooks the game
engine’s instance of the DirectX graphics interface via the Win-
dows Detours library. The entire scene is rendered in stereo at
800 600 resolution with an average frame rate of 60 fps, syn-
chronized to the display refresh rate. (Note: the effective video
frame rate is approximately 25 fps due to the software upscaling
from 2 640 480 to 2 800 600).

6 User Study

We designed a user study to compare the performance and gen-
eral acceptance of our OC prototype to that of a more standard
tangible user interface technique. Fifteen participants (11 male
and 4 female), ages 20–34, were recruited by mass email to the
Computer Science students at our university and by flyers distrib-
uted throughout the campus, and were paid $10 each. All partici-
pants were frequent computer users, but only two had experience
with VR or AR techniques or technology. All participants but
one identified themselves as right handed. Eight participants
identified themselves as requiring corrective contact lenses or
glasses. All of these users determined that the separate left and
right eye focus adjustments on the Headplay display provided
adequate correction.

6.1 Baseline Comparison Technique
We selected virtual buttons projected on a single undifferentiated
surface as the baseline comparison technique for the study (herein
referred to as BL). This technique is similar to the one used by
Weimer and Ganapathy [1989]. More recent versions optically
track the user’s fingers, and have proven robust enough for com-
mercialization as “virtual keyboards” [Roeber et al. 2003; Tomasi
et al. 2003]. In order to adapt this technique to our prototype, we
installed a 60 cm (width) x 78 cm (height) x 0.3 cm (thickness)
panel of PVC plastic over the top of the part of the Dart engine
that we used to implement the OCs described in Section 5.5.1.
The panel, shown in Figure 9, was positioned and curved such
that the virtual buttons would appear in the same locations and
could use the same tracking and segmentation algorithms, as their
OC counterparts, but on an undifferentiated surface. The panel
was attached with quick release hardware to facilitate rapid transi-
tioning between the two techniques during our within-subject
study.

6.2 Task
Participants were asked to perform a selection task simulating the
mechanical inspection of an actual Rolls Royce Dart 510
turboprop engine in our lab. This selection task consisted of
matching target text displayed on 3D virtual placards positioned
at locations on the engine with a corresponding text entry in a
virtual 2D list displayed at a fixed location on the HWD. The 3D
placards are registered to subcomponents of the engine to simu-
late specific items checked during the inspection. Each target text
entry corresponds to a technical maintenance failure condition
that might be recognized, observed, and recorded by a trained
mechanic (e.g., “Broken” or “Cracked”). This target failure con-
dition was randomly chosen from a list of thirty-two actual fail-
ures codes sampled from [DA PAM 738-751].
To successfully complete an individual trial, the user must use
virtual buttons to highlight and confirm the target condition in the
2D list. The list contains four positions and randomly populates
these positions with the target and three other alternate condi-
tions. Participants use four virtual buttons mapped to each posi-
tion in the list for the highlight step, and confirm the highlighting
with a fifth virtual button. Figure 10 shows an example 3D plac-
ard with target text and the accompanying 2D menu, as seen in
the HWD. In order to simplify the study design, we did not
evaluate the valuator-based or rotation OCs.

6.3 Procedure
A within-subject, repeated measures design was used consisting
of two techniques (OC and BL) and five inspected locations on
the engine. The experiment lasted approximately 60 minutes and
was divided into two blocks with a short break between blocks.
Each block consisted of all trials for one of the two techniques,
and the order was counterbalanced across participants. At the
start of the experiment, each participant was shown an instruc-
tional video demonstrating the techniques. Before each block,
each participant was afforded an opportunity to rehearse the tech-
nique using practice trials until they felt comfortable.
The timed portion of the block consisted of 50 trials divided uni-
formly over five locations on the engine. Each trial began by first
presenting a single virtual placard at one of the five randomly
chosen locations. Cueing information was presented to the user
prompting them to locate and read the target condition displayed
on the placard. This portion of the trial was not timed. When
then user positioned and oriented their head so that the placard
was under a crosshair in the middle of their field of view, the 2D
list appeared and the trial timer started. Once the user highlighted

Figure 9: Baseline comparison technique (BL).

Figure 10: Sample selection task featured in the user study.

217

Figure 12. Survey results.

Technique/Factor MEAN MEDIAN MODE MIN MAX
OC

Simple to use 4.00 4 4 1 5
Level of satisfaction 3.87 4 4 1 5

Intuitiveness 4.67 5 5 4 5
BL

Simple to Use 3.43 3 3 1 5
Level of satisfaction 3.40 3 3 2 5

Intuitiveness 3.97 4 5 2 5

and confirmed any condition (right or wrong) in the 2D list, the
trial ended. The experiment logic then logged the overall comple-
tion time, the displayed target condition, and the user’s selection
from the list. The block then proceeded to the next trial in re-
peated fashion until the participant had experienced ten random
target conditions at each of the five locations.

6.4 Hypotheses
Prior to the experiment, we proposed the following hypotheses:
(1) OC would be faster than BL, as the differentiable tactile land-
marks would reduce homing time and facilitate eyes-free manipu-
lation of the virtual buttons.
(2) OC would be more accurate than BL, as the tactile landmarks
would focus gestures and prevent stray entries.

7 Results

We first filtered our collected data for outliers, which we defined
as selection tasks lasting longer than 10 seconds. These outliers
accounted for 3.5% of all trials, with a total of 23 occurring dur-
ing the OC block and 29 occurring during the BL block. The
majority of outliers resulted when the user paused in the middle
of a selection task to adjust the HWD or ask a question. We then
analyzed the remaining data set for completion time, error rate,
and subjective ratings, with = 0.05.

7.1.1 Completion Time Analysis
We applied a 2 (Technique) 5 (Location) repeated measure
ANOVA on mean selection time from a subset of the outlier free
data with our participants as the random variable. This subset
included only those trials where the user correctly selected the
target condition from the menu (96% of our outlier-filtered trials).
Technique had a significant main effect on selection completion
times (F(1,28)=8.11, p < 0.001). On average, the OC technique
was 16% faster (Figure 11) than the BL baseline technique, which
was statistically significant (t(14)= 4.983, p < 0.001). This result
confirms our first hypothesis. Finally, the interaction of Tech-
nique and Location did not have a significant main effect on
completion time for the selection task.

7.1.2 Error Rate Analysis
We applied a 2 (Technique) 5 (Location) repeated measure
ANOVA on mean error rate data, with our participants as random
variables. However, we failed to identify any significant effects
on error rates. Specifically, we found no evidence of Technique
affecting error rates and thus failed to confirm our second hy-
pothesis. We attribute this result to two design shortcomings.
First, based on our observations of the experiment and user input,

the “next” virtual button was placed too close to the physical
protrusion on the engine that was mapped to the virtual button
used to select the bottom item in the menu. As a result, the user’s
hand gesture could accidentally stray into the segmentation win-
dow of this bottom button just prior to activation of the next but-
ton. This would erroneously update the user’s selection without
allowing time to detect the stray gesture before confirmation.
Second, our gesture recognition algorithm does not provide a
depth filter. As a result, if the user’s hand hovers over the top of
any buttons while transitioning, the algorithm will detect this
hovering as button activation. Including depth information in our
gesture recognition algorithm and more careful selection of OC
affordances could decrease the number of these errors.

7.1.3 Subjective Analysis
We asked each participant to complete a post-experiment ques-
tionnaire. This questionnaire featured five-point Likert scale
questions (where 1 is most negative, 5 is most positive) to evalu-
ate ease of use, satisfaction level, and intuitiveness for each inter-
action technique. These summary results from these ratings,
shown in Figure 12, are difficult to generalize given our small
population size and individual rating systems. However, we offer
them as interesting indicators of how our technique might be per-
ceived among a larger population. Collectively, the subjects rated
the OC technique as better than the baseline in terms of ease of
use (4.00), satisfaction (3.87), and intuitiveness (4.67). When
asked to rank the technique they would rather use to perform the
task, 11 of 15 participants selected the OC technique. General
participant comments reflected a preference for tactile landmarks
to help with homing and feedback. The majority of participants
expressed frustration with the top-to-bottom button layout be-
cause of the inability of the gesture algorithm to distinguish hov-
ering from selection.
We also noticed several interesting behaviors in participants.
First, many participants were uncomfortable touching physical
parts of the aircraft engine. As one participant recounted, touch-
ing the plastic surface of BL felt more familiar than touching
louvers and bolts on an engine. Second, several participants used
additional passive haptics from the task environment that were
not linked to our button OCs to assist in the selection task. These
techniques involved incorporating surfaces adjacent to the buttons
as homing points between gestures. Third, even though we delib-
erately did not mention two-handed techniques to the participants,
several participants quickly incorporated them into their tech-
nique. The fastest recorded completion time originated from one
such participant.
Additionally, although our user study did not explicitly feature
tasks mandating eyes-free interaction, several users did attempt
this technique during both OC and BL trials. Multiple users
commented on how they felt more comfortable attempting eyes-
free interaction using OCs as opposed to BL.

3

3.25

3.5

3.75

4

4.25

4.5

OC BL

A
ve

ra
ge

 C
om

pl
et

io
n

Ti
m

e
(s

) ±
 S

EM

Figure 11: Average completion times (seconds) for OC (left)
and BL (right). OC was 16% faster than (BL), which was a

significant speedup.

218

8 Conclusions And Future Work

We were pleased that our initial prototype implementation of OC
was able to support faster completion times than those of the
baseline. Moreover, we were encouraged by the level of enthusi-
asm expressed by the user study participants for our technique.
We also believe that minor modifications to our design (e.g., se-
lecting a better arrangement of buttons) could result in a signifi-
cant improvement over the baseline in error rate performance.

Our immediate research focus is on improving the segmentation
algorithm to replace marker-based tracking with a feature-based
approach. We believe many of the same rich features embodied
in tactilely interesting OCs could also be leveraged for tracking.
Other planned improvements in the segmentation process include
adding depth information; for example by using a stereo pair of
cameras or a depth camera [3DV Systems 2008].

We are also interested in developing tools that would allow a user
to quickly designate promising looking elements in the environ-
ment as OCs. This would require having the user locate a physi-
cal object, select a widget type, and specify how the physical
object is mapped to the widget. It might even be possible for the
system to recognize certain types of features to automatically
suggest possible OCs to support the task at hand.

In closing, we have presented a class of user interaction tech-
niques for AR applications that support gesturing on, and receiv-
ing feedback from, otherwise unused affordances already present
in the domain environment. A collection of Opportunistic Con-
trols was demonstrated to be faster than a similarly laid out set of
controls on an undifferentiated surface. While not suitable for all
user interface scenarios, this technique may be a good choice for
tasks requiring eye and hand focus and restricting other interac-
tion techniques.

Acknowledgments

This research was funded in part by DAFAFRL Grant FA8650-
05-2-6647 and ONR Grant N00014-04-1-0005, and a generous
gift from NVIDIA. We also thank Bengt-Olaf Schneider of
NVIDIA for providing the StereoBLT SDK used to support the
display of stereo camera imagery.

References

DA PAM 738-751, 1992. Functional Users Manual for The Army
Maintenance Management System - Aviation (TAMMS-A).
Washington D.C: U.S. Army.

BLASKÓ, G. AND FEINER, S. 2004. An interaction system for watch
computers using tactile guidance and bidirectional segmented
strokes. Proc. ISWC 2004. 120-123.

BLESER, G. AND STRICKER, D. 2008. Advanced tracking through
efficient image processing and visual-inertial sensor fusion.
Proc. IEEE Virtual Reality Conf. (VR '08), 137-144.

BROOKS, F. P., OUH-YOUNG, M., BATTER, J. J. AND KILPATRICK, P.
J. 1990. Project GROPE-Haptic displays for scientific visuali-
zation. Proc. 17th Annual Conf. on Comp. Graphics and In-
teractive Techniques, 177-185.

BUXTON, W., HILL, R. AND ROWLEY, P. 1985. Issues and tech-
niques in touch-sensitive tablet input, Proc. 12th Annual Conf.
on Comp. Graphics and Interactive Techniques, 215-224.

CONNER, B. D., SNIBBE, S. S., HERNDON, K. P., ROBBINS, D. C.,
ZELEZNIK, R. C. AND DAM, A. V. 1992. Three-Dimensional
Widgets. Proc. 1992 Symp. on Interactive 3D Graphics, 183-
188.

FIALA, M. L. 2005. ARTag, a fiducial marker system using digital
techniques. Proc. 2005 IEEE Computer Society Conf. on
Comp. Vision and Pattern Recognition (CVPR'05) - Volume
2, 590-596.

FISHKIN, K. P. 2004. A taxonomy for and analysis of tangible
interfaces, Personal Ubiquitous Computing 8, 5, 347-358.

GIBSON, J. 1986. The Ecological Approach to Visual Perception.
Hillsdale, N.J.: Lawrence Erlbaum Associates.

HINCKLEY, K., PAUSCH, R., GOBLE, J. C. AND KASSELL, N. F. 1994.
Passive real-world interface props for neurosurgical visualiza-
tion. Proc. SIGCHI Conf. on Human Factors in Computing
Systems, 452 - 458.

INSKO, B. E., MEEHAN, M. J., WHITTON, M. C. AND FREDERICK P.
BROOKS, J. 2001. Passive haptics significantly enhances vir-
tual environments. Technical Report 0-493-17286-6. The
University of North Carolina at Chapel Hill.

ISHII, H. AND ULLMER, B. 1997. Tangible Bits: Towards seamless
interfaces between people, bits and atoms. Proc. SIGCHI
Conf. on Human Factors in Comp. Sys. 234-241.

KJELDSEN, R. AND KENDER, J. 1996. Finding skin in color images.
Proc. 2nd International Conf. on Automatic Face and Gesture
Recognition (FG '96), 312.

KLEIN, G. AND MURRAY, D. 2007. Parallel tracking and mapping
for small AR workspaces. Proc. International Symp. on
Mixed and Augmented Reality (ISMAR'07).

LINDEMAN, R. W., SIBERT, J. L. AND HAHN, J. K. 1999. Hand-held
windows: towards effective 2D interaction in immersive vir-
tual environments. Proc. IEEE Virtual Reality Conference,
205-212.

MURRAY-SMITH, R., WILLIAMSON, J., HUGHES, S. AND QUAADE, T.
2008. Stane: Synthesized surfaces for tactile input. Proc. of
the Twenty-sixth annual SIGCHI Conf. on Human Factors in
Comp. Systems, 1299-1302.

NORMAN, D. 1988. The Psychology of Everyday Things. New
York: Basic Books.

ROEBER, H., BACUS, J. AND TOMASI, C. 2003. Typing in thin air:
The Canesta projection keyboard - a new method of interac-
tion with electronic devices. CHI '03 Extended Abstracts on
Human Factors in Computing Systems, 712-713.

3DV SYSTEMS, 2008. http://www.3dvsystems.com

SZALAVARI, Z. AND GERVAUTZ, M. 1997. The personal interaction
panel - a two-handed interface for augmented reality Com-
puter Graphics Forum 16, 3, 335-346.

TOMASI, C., RAFII, A. AND TORUNOGLU, I. 2003. Full-size projec-
tion keyboard for handheld devices, Communications of the
ACM 46, 7, 70-75.

WEIMER, D. AND GANAPATHY, S. K. 1989. A synthetic visual envi-
ronment with hand gesturing and voice input. Proc. SIGCHI
Conf. on Human Factors in Comp. Systems, 235-240.

