
211

Opportunistic Controls: Leveraging Natural Affordances as Tangible User 
Interfaces for Augmented Reality 

 
Steven J. Henderson 

 
Steven Feiner 

Columbia University*

Abstract 
We present Opportunistic Controls, a class of user interaction 
techniques for augmented reality (AR) applications that support 
gesturing on, and receiving feedback from, otherwise unused 
affordances already present in the domain environment. Oppor-
tunistic Controls leverage characteristics of these affordances to 
provide passive haptics that ease gesture input, simplify gesture 
recognition, and provide tangible feedback to the user. 3D wid-
gets are tightly coupled with affordances to provide visual feed-
back and hints about the functionality of the control. For example, 
a set of buttons is mapped to existing tactile features on domain 
objects. We describe examples of Opportunistic Controls that we 
have designed and implemented using optical marker tracking, 
combined with appearance-based gesture recognition. We present 
the results of a user study in which participants performed a simu-
lated maintenance inspection of an aircraft engine using a set of 
virtual buttons implemented both as Opportunistic Controls and 
using simpler passive haptics.  Opportunistic Controls allowed 
participants to complete their tasks significantly faster and were 
preferred over the baseline technique.  
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1 Introduction 

Many current and potential augmented reality (AR) application 
domains pose two sets of competing constraints.  The first set of 
constraints limits extraneous head, eye, and hand movements 
beyond the immediate vicinity of a user’s current task.  For ex-
ample, a mechanic servicing the internals of a turbine engine may 
find it impractical (or impossible) to reposition their hands to 
manipulate any device not currently within reach or sight.  Like-
wise, head and eye movements that cause the mechanic to avert 
their gaze from the repair area can break context and increase task 
completion time.  The second set of constraints relates to various 
policies, material properties, and physical space limitations that 
restrict modifications to the application’s environment.  For ex-
ample, safety regulations and a confined repair space might pre-
clude the mechanic from bringing in, or installing, certain inter-
face devices (e.g., portable devices or keypads) that might other-
wise compensate for limited head, eye, and hand movement. 
To support these types of AR scenarios, we have developed a 
class of interaction techniques we call Opportunistic Controls, 
examples of which are shown in Figure 1. An Opportunistic Con-
trol (OC) is a tangible user interface [Ishii and Ullmer 1997] that 
leverages naturally occurring, tactilely interesting, and otherwise 
unused affordances—properties of an object that determine how it 
can be used [Gibson 1986; Norman 1988].  These affordances 
serve as tactile landmarks [Blaskó and Feiner 2004] that provide 
inherent passive haptic feedback [Lindeman et al. 1999] for hand 
gestures and are augmented with overlaid 3D widgets to provide 
visual feedback.  Ideally, OCs are “harvested” from compatible 
surfaces in the physical task domain of the AR application.  As 
we describe later, certain characteristics of the tactile landmarks 
are exploited to simplify gesture recognition. 
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Figure 1:  Opportunistic Controls in action.  (left) A user manipulates a virtual button while receiving haptic feedback from the raised 
geometry of the underlying engine housing.  (center) A user leverages the grooves in a wiring harness to help position a virtual slider. 

(right) A user turns the collar of an antenna connector to change a virtual text box value. 
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An OC interface enables a user to interact with an AR application 
by touching naturally occurring surfaces within an application’s 
task environment.  For example, the aforementioned mechanic 
servicing the turbine engine might use various fasteners (e.g., 
screws and bolts) located on individually serviced components to 
display documentation specific to each component.  A rotating 
washer or other surface on the same component can be used to 
page through the documentation or select entries from a list of 
observed conditions.  A grooved surface in the vicinity of the 
component, such as a wiring harness or door hinge, might map to 
a virtual spinner used to enter diagnostic data or set various com-
ponent parameters. 
This approach creates a tangible user interface with three distin-
guishing properties: (1) leveraging otherwise unused, and unasso-
ciated objects that are already in the task domain as primary user 
interface components, (2) deliberately exploiting certain features 
of these objects for passive haptics and hand gesture recognition, 
and (3) minimizing the need for external user interface artifacts. 
As we describe  below, this generalizes earlier work on passive 
haptics. 

2 Related Work 

There is much previous work on the use of haptic feedback in 
user interfaces in general and 3D user interfaces in particular. 
Some of this involves active haptics (e.g., [Brooks et al. 1990]), 
in which active devices, typically using motors, create forces and 
torques as part of the user interface. Here, we concentrate on pre-
vious work on passive haptics, in which passive elements in the 
environment respond to user interaction. 
Buxton and colleagues [1985] added a cardboard overlay with 
cutout holes to a 2D touch tablet, creating a set of separate wid-
gets, each of which could be discriminated through tactile feed-
back, encouraging eyes-free use. Weimer and Ganapathy [1989] 
positioned a set of 3D virtual buttons operated with a DataGlove 
to be coplanar with a physical desktop, providing what they called 
“a natural source of tactile feedback.”  Later, Hinckley and col-
leagues [1994] used a ball or doll's head and a small plastic panel, 
both outfitted with 6DOF trackers as “passive interface props” 
with which a physician could control an interactive visualization 
of a patient's head when planning neurosurgery. 
Several groups have used tracked hand-held tablets with tracked 
fingers or styli to provide a supportive mobile surface on which to 
operate 2D widgets in AR (e.g., [Szalavari and Gervautz 1997]) 
or VR (e.g., [Lindeman et al. 1999]).  Lindeman, Sibert, and Hahn 
[1999] referred to this as “passive haptics” or “passive-haptic 
feedback.”  Later work by Insko and colleagues [2001] demon-
strated the advantages of passive haptics in virtual environments, 
positioning styrofoam blocks to coincide with the walls of an 
otherwise virtual environment.  (In fact, one could argue that 
essentially any immersive virtual environment in which the vir-
tual floor is coplanar with the real floor is using passive haptics.)  
Research on tangible user interfaces [Ishii and Ullmer 1997] uses 
a variety of physical artifacts, often tracked or recognized wire-
lessly, as physical representations of otherwise virtual data and to 
physicalize otherwise virtual interaction techniques. 
All of this previous work either uses simple naturally occurring 
surfaces (e.g., [Weimer and Ganapathy 1989]) or introduces new 
objects into the environment, whether simple (e.g., [Szalavari and 
Gervautz 1997]) or more complex (e.g., [Hinckley et al. 1994]). 
In contrast, we are interested in the opportunistic use of objects 

that already exist in a particular task domain, and whose possibly 
complex surface geometry provides affordances that lend them-
selves well to certain kinds of interactions. Thus, OCs apply Bux-
ton and colleagues’ notion of 2D haptically discriminable widgets 
to generalize and extend Weimer and Ganapathy’s early example 
of a set of 3D widgets laid out on a single undifferentiated exist-
ing surface, without adding additional objects to the environment. 

3 Alternative User Interfaces 

Prior to designing OCs, we considered some of the many alterna-
tive interaction techniques involving devices such as keyboards, 
keypads, and touch screens. If these devices are not readily avail-
able within the task domain, they can be added or mobile versions 
can be used. We rejected these alternatives because of the two 
sets of competing constraints highlighted in Section 1.  Some AR 
task domains (e.g., aviation maintenance) are not amenable to the 
introduction of objects that are not indigenous to the domain.  
Even if mobile devices are made available, they may require a 
user to momentarily shift their hands and eyes away from a spe-
cific task. Some require that the user hold them in one hand (e.g., 
a Handykey Twiddler) or momentarily engage both hands (e.g., a 
wrist-worn device operated with the other hand). 
In contrast, OCs use existing features of the domain environment 
to provide a suitable tangible user interface.  If the user’s eyes and 
hands must remain in a certain area, then affordances within that 
area may be able to be exploited as part of the user interface.  
Finally, when the user finishes their task, nothing remains behind 
that must be maintained, hidden, or removed.  
It is important to address potential situations when the task do-
main lacks sufficient suitable features for our technique.  For 
example, a user might encounter areas that do not offer enough of 
the right kind of features to satisfy a task’s required number and 
type of OCs.  In these cases, our technique would offer a smooth 
fallback to conventional passive haptic feedback techniques by 
binding one or more OCs to undifferentiated available flat surface 
regions. 

4 Definition 

We define an OC as the six tuple ),,,,,( , 
where:  
  represents a continuous physical region bounding the natu-

rally occurring affordance(s) serving as one or more tactile 
landmarks for hand gestures.  This region is specified by a 3D 
physical model capturing the physical geometry used by the 
OC.   

 is a 3D widget satisfying the definition and design specifi-
cations provided by Conner and colleagues [1992].  Each in-
stance of  consists of a virtual model representing the wid-
get’s geometry and an augmented transition network (ATN) 
specifying the widget’s behavior. 

  is a function mapping the encapsulated virtual geometry of 
the widget ( ) to the physical geometry of the affordance 
region ( ). This function serves to dynamically register the 
3D widget’s model at the correct location in based on the 
current state of the widget’s ATN.   

 =                        is the set of visually recognized hand ges-
tures associated with the OC.  These gestures share a common 
3D model space and grammar. 

},..,{ 21 n
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 represents the functional mapping from the grammar of 
to the ATN of and defines how an individual widget re-

sponds to gesturing.  

  is the 3D transformation required to map locations in the 
model space of  to the model space of . This transforma-
tion is used to detect when and where a gesture intersects with 
an OC’s physical geometry.  

As defined above, each OC consists of a particular contiguous 
physical region paired with a particular 3D widget that together 
respond to one or more gestures.  This definition distills the OC to 
an atomic building block that can be collectively combined to 
form more complex interfaces.  
It is useful to place our definition of OCs within the broader con-
text of tangible user interfaces. Using Fishkin’s taxonomy of tan-
gible user interfaces [Fishkin 2004], OCs present a nearby em-
bodiment to the user.  That is, the output of applications featuring 
OCs will take place near the primary input device (the OC’s 
physical affordance region, ).  Continuing the classification, 
each OC presents a fully realized metaphor to the user.  Given the 
definition above, the virtual component of the OC (the 3D widget, 

) is paired to the physical system (the physical affordance 
region, ).  When the user gestures on an OC, the 3D widget and 
physical affordance region respond and feel as one control. 

5 Prototype 

We developed a hardware and software architecture for studying 
OCs in an indoor laboratory setting.  This architecture allowed us 
to create a specific prototype implementation that we evaluated 
by means of the user study described in Section 6. 

5.1 Affordance Design  
We experimented with three kinds of affordances in our proto-
type.  The first kind includes unused objects in the environment 
that tangibly resemble buttons.  These objects have physical con-
tours that are easily distinguished by a user’s hand.  Examples 
include various fasteners (e.g., screws, bolts, and nuts), raised 
geometry, small holes, dimples, or the intersection of hard edges, 
as shown in Figure 2.  OCs based on these types of surfaces sup-
port binary gestures in which the OC is activated when the user’s 
hand intersects any part of the button.  Here, passive haptic feed-
back associated with button-based OCs need only provide infor-
mation about the button’s location to prove useful (a result dem-
onstrated in the user study).  However, certain types of elastic 
surfaces might provide additional feedback about the state of the 
button.  For example, objects made of rubber or malleable plastic 
could provide elastic feedback as the user presses the button. 

The second kind of affordance we explored includes linear or 
curved static surfaces in the environment that could support 
valuator-based OCs.  These include smooth edges, pipes, cords, 
or natural surfaces, as shown in Figure 3.  Gestures interacting 
with these types of surfaces require more precise tracking of the 
user’s hand and subsequent positioning of 3D widgets.  More 
interesting versions of these affordances are characterized by 

grooves, notches, and other textures that provide discretized feed-
back to the user as they gesture along the control (e.g., in the 
spirit of ridged surfaces that are specifically designed to provide 
haptic feedback [Murray-Smith et al. 2008]).   

The third kind of affordance we studied involves surfaces associ-
ated with moveable objects in the environment.  Examples include 
objects that rotate (e.g., free spinning washers, quick-release fas-
teners, and disconnected wiring connectors), objects that slide 
(e.g., large poster clips on top of dry erase boards, and control 
rods), and objects that bend (e.g., rubberized tubes and hoses), as 
shown in Figure 4.  These objects allow for richer controls whose 
underlying physical geometry ( ) moves with the 3D widget 
( ) in response to the user’s gestures.  

Throughout this exploration of the space of possible affordances, 
we adopted the following initial set of guidelines governing the 
selection of OCs: 
 OCs should avoid desensitizing the user to a function of an 

overloaded object (e.g., using switches and knobs on a con-
trol panel for functions outside their design specification). 

 OCs should not endanger the user or desensitize them to 
surfaces that could prove dangerous outside the context of 
the OC (e.g., using the tip of a spark plug as a button). 

 When applicable, affordances should not overload objects 
that might become damaged through gesturing  (either while 
the user is manipulating the OC or when the user tries to 
execute the gesture when the object is assuming its designed 
purpose). 

5.2 Gesture Recognition Design 
Gesture recognition is performed optically with a single camera 
mounted overhead with clear line of sight to all OCs in our envi-
ronment.  The camera is tracked by using the ARTag optical 
marker tracking library [Fiala 2005] to detect a fiducial array 
within the camera’s current frame.  We use a separate dedicated 
camera (as opposed to the cameras supporting the user’s display) 
to free the user from having to look at the OCs.  This allows the 
user to look in another location while gesturing and supports 
eyes-free interaction. 
A separate execution thread analyzes each camera frame for the 
user’s gesture and is implemented in three phases—data reduc-
tion, gesture matching, and gesture parsing.  In the data reduction 
phase, we build on the appearance-based approach developed by 
Kjeldsen and Kender [1996] to segment each frame to locate the 
user’s hands.  The segmentation process first defines the collec-
tive gesture model space as one sharing the camera’s 2D coordi-
nate system.  In doing so, the segmentation algorithm ignores any 

Figure 3: Objects that could support valuator OCs. 

Figure 4: Objects that could support moveable OCs. 

Figure 2: Objects that could support button OCs. 
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depth information in the scene.  Despite several notable disadvan-
tages discussed in Section 5.4, this relaxation speeds gesture rec-
ognition and provides a sufficient grammar for our OCs.  We next 
define the physical model for each OC ( ) as a convex polyhe-
dron that generally matches the physical contours of a particular 
OC.  Each polyhedron is defined by 3D points positioned in a 
common physical interface coordinate system.  The algorithm 
then defines the transformation  that enables conversion of 
coordinates in gesture space (camera coordinates) to and from 
physical interface coordinates.   
This is an important step in the data reduction chain, and a par-
ticular advantage afforded by OCs, because it focuses the amount 
of follow-on image processing required for segmentation.  Be-
cause the interaction technique is only concerned with gestures 
that might intersect with specific physical areas, segmentation 
algorithms can restrict processing to the 2D pixel regions that 
overlap with each OC’s physical model.  Moreover, because we 
track the position and orientation of the camera,  is comput-
able in real-time by solving for the inverse model-view matrix 
received from the ARTag library.  The algorithm calculates a 
segmentation window for each OC by using the value of  to 
construct a 2D bounding box encapsulating each OC’s physical 
geometry (Figure 5, left).  Each segmentation window is filtered 
for significant values of the primary color red in the source im-
age’s 24-bit RGB color format.  When complemented by a con-
trolled lighting environment, this filtering can effectively isolate a 
user’s gesture from other objects in an image and supports a wide 
range of skin pigmentation.  The result is a binary image that 
represents possible locations of the user’s skin touching (or over-
lapping) each OC’s geometry (Figure 5, right).   
The algorithm then executes a connected component analysis for 
each OC bounding box and assumes the largest component in 
each is the user’s hand, finger, or set of fingers.  A high-pass filter 
is applied to the size of each maximum component to prevent 
noise from triggering buttons when skin is not present.  During 
this step, the reduced pixel area provided by each OC’s segmenta-
tion window again helps reduce data processing by limiting the 
breadth and depth of recursive connected component analysis.  
During the gesture matching phase of the algorithm, the largest 
connected component C in each OC is evaluated for the location 
of point ph, where ph approximates the location of the user’s fin-
ger tip in the connected component.  This point is determined by 
selecting the leftmost point on the highest scan line of C.  This 
approach assumes ph is the highest leftmost point of the user’s 
gesture in the camera’s coordinate system.  The algorithm then 
uses -1 to translate the point ph to the corresponding point th in 
the physical coordinates of the OC ( ).  The location of th is 
used to match each OC’s gesture ( ).   
Gesture parsing is accomplished with a finite state machine 
(FSM) for each OC that resembles the ATN of the accompanying 
3D widget ( ).  Each state in the FSM represents a command 
(e.g., “BUTTON_1_DOWN” or “SLIDER_2_UP”) in the shared 
OC grammar  and the ATN’s transitions are mapped to the OC 
gestures .  The gesture algorithm then uses the functional map-
ping of  to translate the current command to the appropriate 

state in the corresponding 3D widget .  This final step ensures 
the widget’s ATN is synchronized with the user’s gestures.   

5.3 Widget Design 
We experimented with several designs for 3D widgets ( ) as 
part of our prototype development.  In each case, we sought to 
create an appropriate 3D model that matched the particular ge-
ometry of the OC.  In all cases, we found that increasing the 
transparency of the widget models was helpful to allow users to 
partially view the OCs underlying geometry.  The transparency 
also allows the user to partially view any gestures that might be 
occluded by the 3D Widget.  The ATNs for each widget are mod-
eled as specified by Conner and colleagues [1992].  This was a 
trivial process for button-type OCs, and involved slightly more 
complicated transitions for valuator and moveable OCs  

5.4 Design Limitations 
Our design suffers from several limitations.  First, it relies on an 
optical marker-based tracking scheme to compute the value of 

.  Therefore, markers must be added to the domain environ-
ment, contradicting our vision of OCs as not requiring modifica-
tions of or additions to the task domain.  We view the use of such 
markers as a temporary and minor violation of this premise, and 
believe that it will be possible to build on recent advances in 
markerless tracking (e.g., [Klein and Murray 2007; Bleser and 
Stricker 2008]) to replace our current use of markers. Moreover, 
these markers are cheaper and arguably easier to add than alterna-
tive interface devices, and minimally disturb the task environ-
ment.  Second, our segmentation algorithm’s relaxation of depth 
information limits the type of interactions one can perform—
specifically clutching and hovering.  Finally, because each OC’s 
bounding box is segmented separately, the gesture algorithm can 
produce multiple gestures from multiple OCs.  This was a delib-
erate design decision to support the user gesturing on more than 
one OC simultaneously (i.e., for multi-touch interactions).  How-
ever, this feature requires more sophisticated program logic to 
reconcile potentially conflicting gestures.  When coupled with our 
algorithm’s lack of depth information, this feature can create 
situations in which hovering and clutching movements overlap 
neighboring controls and are erroneously interpreted as active 
gestures.  We discuss this further in the description of our user 
study. 

Figure 5: Unsegmented (left) and segmented (right) bound-
ing boxes for a set of OCs.  Graphics are added in debugging 

interface. (The user does not see this camera’s view.) 
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5.5 Prototype Implementation 
We implemented our current prototype using two locally net-
worked computers, one for managing gesture recognition for the 
OCs, and one for rendering OC widgets as part of a broader AR 
application testing the OCs in various scenarios.  The decision to 
use two machines resulted in part from concerns about the re-
source load required to drive a binocular stereo video see-though 
display, while also supporting hand-gesture recognition.  Addi-
tionally, we are interested in the ability of our software architec-
ture to support scenarios where a single, relatively fixed server 
and attached cameras could provide gesture recognition to multi-
ple users. 

5.5.1 Implemented OCs 
Our current implementation features five button-type OCs on a 
Rolls-Royce Dart 510 turboprop aircraft engine in our lab, as 
shown in Figures 6–8.  Four of these OCs (Buttons A–D) map to 
large smooth protrusions on the outside of the engine’s compres-
sion section and are used to select items in a virtual menu.  The 
fifth button OC maps to a nearby bolt, and is used as a “next” 
button to navigate between menus.  The menu button 3D widgets 
were modeled to resemble the underlying protrusions, while the 
“next” button 3D widget is a semi-transparent circle.  All button 
models use multiple textures to provide visual feedback when the 
buttons are pressed.  
We also implemented two other types of OCs.  One is a valuator-
based OC that maps a slider to a grooved wiring harness on the 
Dart engine (Figure 1, center).  This slider is used to control a 
numeric value recorded in a text box.  The other is a rotating OC 
that maps an antenna connector to a virtual text box (Figure 1, 
right).  As the user rotates the connector’s collar, the text box 
changes value.       

5.5.2 Gesture Recognition 
The gesture-tracking algorithm runs on a dedicated Dell M1710 
XPS laptop connected to a fixed Point Grey Firefly MV 640 480 
resolution color camera tracked by a single ARTag fiducial array 
mounted near the five button-type OCs (Figure 8).  The gesture 
recognition application segments the five button-type OCs and 
parses gestures at a 30 fps rate. 

5.5.3 Opportunistic Control Application 
We implemented a central OC application that integrates all as-
pects of gesture recognition, rendering, user tracking, and AR task 

management.  This application executes on a PC running Win-
dows XP Professional, with a single NVIDIA Quadro 4500 graph-
ics card.  We then attached a custom-built stereo video see-
through head worn display (HWD).  This HWD was constructed 
from a Headplay 800 600 resolution color stereo gaming HWD 
with two Point Grey Firefly MV 640 480 resolution color cam-
eras mounted to the front and connected to separate IEEE 1394a 
buses on the PC (Figure 8).  The cameras are equipped with 5mm 
micro lenses and capture at a 30 fps rate.   
Tracking is provided by two systems.  For the user’s head, we 
used a ceiling-mounted InterSense IS900 6DOF tracker to track a 
single station mounted on the HWD.  Head tracking data is used 
to position all virtual content, with the exception of the 3D wid-
gets that are part of the OCs.  These widgets are positioned using 
the same optically tracked ARTag fiducial array used by the ges-
ture recognition camera, sensed with the HWD’s left camera.  
Note that the HWD cameras operate independently of the fixed 
gesture recognition camera in order to facilitate eyes-free gesture 
recognition.  
The primary AR application software was developed as a game 
engine “mod” using the Valve Source Engine Software Develop-
ment Kit.  The engine’s “player” serves as a virtual proxy for the 

Figure 6: Dart 510 Engine (without OCs). Figure 7: Dart 510 Engine (with five button-type OCs). 

Figure 8:  A user (wearing a stereo video see-through HWD) 
manipulates OCs with our prototype. The fixed gesture rec-

ognition camera appears at the top of the photo. 
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user and is positioned by tracking information from the IS900.  
All virtual content in the AR scene is provided by custom game 
engine models, GUI elements, and other components. Full resolu-
tion stereo video from the two Firefly MV cameras is stretched to 
the scene’s back buffer via an external DLL that hooks the game 
engine’s instance of the DirectX graphics interface via the Win-
dows Detours library.  The entire scene is rendered in stereo at 
800 600 resolution with an average frame rate of 60 fps, syn-
chronized to the display refresh rate. (Note: the effective video 
frame rate is approximately 25 fps due to the software upscaling 
from 2 640 480 to 2 800 600). 

6 User Study 

We designed a user study to compare the performance and gen-
eral acceptance of our OC prototype to that of a more standard 
tangible user interface technique.  Fifteen participants (11 male 
and 4 female), ages 20–34, were recruited by mass email to the 
Computer Science students at our university and by flyers distrib-
uted throughout the campus, and were paid $10 each.  All partici-
pants were frequent computer users, but only two had experience 
with VR or AR techniques or technology.  All participants but 
one identified themselves as right handed.  Eight participants 
identified themselves as requiring corrective contact lenses or 
glasses.  All of these users determined that the separate left and 
right eye focus adjustments on the Headplay display provided 
adequate correction.  

6.1 Baseline Comparison Technique 
We selected virtual buttons projected on a single undifferentiated 
surface as the baseline comparison technique for the study (herein 
referred to as BL).  This technique is similar to the one used by 
Weimer and Ganapathy [1989].  More recent versions optically 
track the user’s fingers, and have proven robust enough for com-
mercialization as “virtual keyboards” [Roeber et al. 2003; Tomasi 
et al. 2003].  In order to adapt this technique to our prototype, we 
installed a 60 cm (width) x 78 cm (height) x 0.3 cm (thickness) 
panel of PVC plastic over the top of the part of the Dart engine 
that we used to implement the OCs described in Section 5.5.1. 
The panel, shown in Figure 9, was positioned and curved such 
that the virtual buttons would appear in the same locations and 
could use the same tracking and segmentation algorithms, as their 
OC counterparts, but on an undifferentiated surface.  The panel 
was attached with quick release hardware to facilitate rapid transi-
tioning between the two techniques during our within-subject 
study.   

6.2 Task 
Participants were asked to perform a selection task simulating the 
mechanical inspection of an actual Rolls Royce Dart 510 
turboprop engine in our lab.  This selection task consisted of 
matching target text displayed on 3D virtual placards positioned 
at locations on the engine with a corresponding text entry in a 
virtual 2D list displayed at a fixed location on the HWD.  The 3D 
placards are registered to subcomponents of the engine to simu-
late specific items checked during the inspection.  Each target text 
entry corresponds to a technical maintenance failure condition 
that might be recognized, observed, and recorded by a trained 
mechanic (e.g., “Broken” or “Cracked”).  This target failure con-
dition was randomly chosen from a list of thirty-two actual fail-
ures codes sampled from [DA PAM 738-751].  
To successfully complete an individual trial, the user must use 
virtual buttons to highlight and confirm the target condition in the 
2D list.  The list contains four positions and randomly populates 
these positions with the target and three other alternate condi-
tions.   Participants use four virtual buttons mapped to each posi-
tion in the list for the highlight step, and confirm the highlighting 
with a fifth virtual button. Figure 10 shows an example 3D plac-
ard with target text and the accompanying 2D menu, as seen in 
the HWD.  In order to simplify the study design, we did not 
evaluate the valuator-based or rotation OCs.  

6.3 Procedure 
A within-subject, repeated measures design was used consisting 
of two techniques (OC and BL) and five inspected locations on 
the engine.  The experiment lasted approximately 60 minutes and 
was divided into two blocks with a short break between blocks.  
Each block consisted of all trials for one of the two techniques, 
and the order was counterbalanced across participants.  At the 
start of the experiment, each participant was shown an instruc-
tional video demonstrating the techniques.  Before each block, 
each participant was afforded an opportunity to rehearse the tech-
nique using practice trials until they felt comfortable. 
The timed portion of the block consisted of 50 trials divided uni-
formly over five locations on the engine.  Each trial began by first 
presenting a single virtual placard at one of the five randomly 
chosen locations.  Cueing information was presented to the user 
prompting them to locate and read the target condition displayed 
on the placard.  This portion of the trial was not timed.  When 
then user positioned and oriented their head so that the placard 
was under a crosshair in the middle of their field of view, the 2D 
list appeared and the trial timer started.  Once the user highlighted 

Figure 9: Baseline comparison technique (BL). 

Figure 10: Sample selection task featured in the user study. 
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Figure 12. Survey results. 

Technique/Factor MEAN MEDIAN MODE MIN MAX
OC

Simple to use 4.00 4 4 1 5
Level of satisfaction 3.87 4 4 1 5

Intuitiveness 4.67 5 5 4 5
BL

Simple to Use 3.43 3 3 1 5
Level of  satisfaction 3.40 3 3 2 5

Intuitiveness 3.97 4 5 2 5

and confirmed any condition (right or wrong) in the 2D list, the 
trial ended.  The experiment logic then logged the overall comple-
tion time, the displayed target condition, and the user’s selection 
from the list.  The block then proceeded to the next trial in re-
peated fashion until the participant had experienced ten random 
target conditions at each of the five locations. 

6.4 Hypotheses 
Prior to the experiment, we proposed the following hypotheses: 
(1) OC would be faster than BL, as the differentiable tactile land-
marks would reduce homing time and facilitate eyes-free manipu-
lation of the virtual buttons. 
(2) OC would be more accurate than BL, as the tactile landmarks 
would focus gestures and prevent stray entries. 

7 Results 

We first filtered our collected data for outliers, which we defined 
as selection tasks lasting longer than 10 seconds.  These outliers 
accounted for 3.5% of all trials, with a total of 23 occurring dur-
ing the OC block and 29 occurring during the BL block.  The 
majority of outliers resulted when the user paused in the middle 
of a selection task to adjust the HWD or ask a question.  We then 
analyzed the remaining data set for completion time, error rate, 
and subjective ratings, with  = 0.05.  

7.1.1 Completion Time Analysis 
We applied a 2 (Technique)  5 (Location) repeated measure 
ANOVA on mean selection time from a subset of the outlier free 
data with our participants as the random variable.  This subset 
included only those trials where the user correctly selected the 
target condition from the menu (96% of our outlier-filtered trials).   
Technique had a significant main effect on selection completion 
times (F(1,28)=8.11, p < 0.001).  On average, the OC technique 
was 16% faster (Figure 11) than the BL baseline technique, which 
was statistically significant (t(14)= 4.983, p < 0.001).  This result 
confirms our first hypothesis.  Finally, the interaction of Tech-
nique and Location did not have a significant main effect on 
completion time for the selection task.  

7.1.2 Error Rate Analysis 
We applied a 2 (Technique)  5 (Location) repeated measure 
ANOVA on mean error rate data, with our participants as random 
variables.  However, we failed to identify any significant effects 
on error rates.  Specifically, we found no evidence of Technique 
affecting error rates and thus failed to confirm our second hy-
pothesis.  We attribute this result to two design shortcomings.  
First, based on our observations of the experiment and user input, 

the “next” virtual button was placed too close to the physical 
protrusion on the engine that was mapped to the virtual button 
used to select the bottom item in the menu.  As a result, the user’s 
hand gesture could accidentally stray into the segmentation win-
dow of this bottom button just prior to activation of the next but-
ton.  This would erroneously update the user’s selection without 
allowing time to detect the stray gesture before confirmation.  
Second, our gesture recognition algorithm does not provide a 
depth filter.  As a result, if the user’s hand hovers over the top of 
any buttons while transitioning, the algorithm will detect this 
hovering as button activation.  Including depth information in our 
gesture recognition algorithm and more careful selection of OC 
affordances could decrease the number of these errors. 

7.1.3 Subjective Analysis 
We asked each participant to complete a post-experiment ques-
tionnaire.  This questionnaire featured five-point Likert scale 
questions (where 1 is most negative, 5 is most positive) to evalu-
ate ease of use, satisfaction level, and intuitiveness for each inter-
action technique.  These summary results from these ratings, 
shown in Figure 12, are difficult to generalize given our small 
population size and individual rating systems.  However, we offer 
them as interesting indicators of how our technique might be per-
ceived among a larger population.  Collectively, the subjects rated 
the OC technique as better than the baseline in terms of ease of 
use (4.00), satisfaction (3.87), and intuitiveness (4.67).  When 
asked to rank the technique they would rather use to perform the 
task, 11 of 15 participants selected the OC technique.  General 
participant comments reflected a preference for tactile landmarks 
to help with homing and feedback.  The majority of participants 
expressed frustration with the top-to-bottom button layout be-
cause of the inability of the gesture algorithm to distinguish hov-
ering from selection.  
We also noticed several interesting behaviors in participants.  
First, many participants were uncomfortable touching physical 
parts of the aircraft engine.  As one participant recounted, touch-
ing the plastic surface of BL felt more familiar than touching 
louvers and bolts on an engine.  Second, several participants used 
additional passive haptics from the task environment that were 
not linked to our button OCs to assist in the selection task.  These 
techniques involved incorporating surfaces adjacent to the buttons 
as homing points between gestures.  Third, even though we delib-
erately did not mention two-handed techniques to the participants, 
several participants quickly incorporated them into their tech-
nique.  The fastest recorded completion time originated from one 
such participant.  
Additionally, although our user study did not explicitly feature 
tasks mandating eyes-free interaction, several users did attempt 
this technique during both OC and BL trials.  Multiple users 
commented on how they felt more comfortable attempting eyes-
free interaction using OCs as opposed to BL. 

3

3.25

3.5

3.75

4

4.25

4.5

OC BL

A
ve

ra
ge

 C
om

pl
et

io
n 

Ti
m

e 
(s

) ±
 S

EM

Figure 11: Average completion times (seconds) for OC (left) 
and BL (right). OC was 16% faster than (BL), which was a 

significant speedup. 
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8 Conclusions And Future Work 

We were pleased that our initial prototype implementation of OC 
was able to support faster completion times than those of the 
baseline.  Moreover, we were encouraged by the level of enthusi-
asm expressed by the user study participants for our technique.  
We also believe that minor modifications to our design (e.g., se-
lecting a better arrangement of buttons) could result in a signifi-
cant improvement over the baseline in error rate performance. 

Our immediate research focus is on improving the segmentation 
algorithm to replace marker-based tracking with a feature-based 
approach.  We believe many of the same rich features embodied 
in tactilely interesting OCs could also be leveraged for tracking.  
Other planned improvements in the segmentation process include 
adding depth information; for example by using a stereo pair of 
cameras or a depth camera [3DV Systems 2008]. 

We are also interested in developing tools that would allow a user 
to quickly designate promising looking elements in the environ-
ment as OCs.  This would require having the user locate a physi-
cal object, select a widget type, and specify how the physical 
object is mapped to the widget. It might even be possible for the 
system to recognize certain types of features to automatically 
suggest possible OCs to support the task at hand.   

In closing, we have presented a class of user interaction tech-
niques for AR applications that support gesturing on, and receiv-
ing feedback from, otherwise unused affordances already present 
in the domain environment.  A collection of Opportunistic Con-
trols was demonstrated to be faster than a similarly laid out set of 
controls on an undifferentiated surface.  While not suitable for all 
user interface scenarios, this technique may be a good choice for 
tasks requiring eye and hand focus and restricting other interac-
tion techniques.  
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